重庆市七校(渝北中学2023年高考数学二模试卷含解析.doc
-
资源ID:88313376
资源大小:1.80MB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
重庆市七校(渝北中学2023年高考数学二模试卷含解析.doc
2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为( )ABCD2已知集合A0,1,B0,1,2,则满足ACB的集合C的个数为()A4B3C2D13若直线与曲线相切,则( )A3BC2D4已知曲线且过定点,若且,则的最小值为( ).AB9C5D5函数()的图像可以是( )ABCD6 “且”是“”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件7如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )ABC6D与点O的位置有关8已知a,bR,则( )Ab3aBb6aCb9aDb12a9设复数满足,则( )A1B-1CD10九章算术有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠, 长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是( )A斤B 斤C斤D斤11若,则实数的大小关系为( )ABCD12为得到函数的图像,只需将函数的图像( )A向右平移个长度单位B向右平移个长度单位C向左平移个长度单位D向左平移个长度单位二、填空题:本题共4小题,每小题5分,共20分。13设是等比数列的前项的和,成等差数列,则的值为_14若函数为偶函数,则 15已知向量,且向量与的夹角为_.16根据如图所示的伪代码,若输出的的值为,则输入的的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.18(12分)P是圆上的动点,P点在x轴上的射影是D,点M满足(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程19(12分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,的大小关系.20(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角CAD60°(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为APB,DPC,问点P在何处时,+最小?21(12分) 选修4 - 5:不等式选讲 已知都是正实数,且,求证: 22(10分)已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.2、A【解析】由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.3、A【解析】设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,由得,代入得,则,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.4、A【解析】根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.5、B【解析】根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【详解】由题可知:,所以当时,又,令,则令,则所以函数在单调递减在单调递增,故选:B【点睛】本题考查函数的图像,可从以下指标进行观察:(1)定义域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.6、A【解析】画出“,所表示的平面区域,即可进行判断.【详解】如图,“且”表示的区域是如图所示的正方形,记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,显然是的真子集,所以答案是充分非必要条件,故选:.【点睛】本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.7、B【解析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.8、C【解析】两复数相等,实部与虚部对应相等.【详解】由,得,即a,b1b9a故选:C【点睛】本题考查复数的概念,属于基础题.9、B【解析】利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.10、B【解析】依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果【详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题11、A【解析】将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.12、D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】设等比数列的公比设为再根据成等差数列利用基本量法求解再根据等比数列各项间的关系求解即可.【详解】解:等比数列的公比设为成等差数列,可得若则显然不成立,故则,化为解得,则故答案为:【点睛】本题主要考查了等比数列的基本量求解以及运用,属于中档题.14、1【解析】试题分析:由函数为偶函数函数为奇函数,考点:函数的奇偶性【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型首先利用转化思想,将函数为偶函数转化为 函数为奇函数,然后再利用特殊与一般思想,取15、1【解析】根据向量数量积的定义求解即可【详解】解:向量,且向量与的夹角为,|;所以:()2cos221,故答案为:1【点睛】本题主要考查平面向量的数量积的定义,属于基础题16、【解析】算法的功能是求的值,根据输出的值,分别求出当时和当时的值即可得解【详解】解:由程序语句知:算法的功能是求的值,当时,可得:,或(舍去);当时,可得:(舍去)综上的值为:故答案为:【点睛】本题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”(2)见解析【解析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望试题解析:()根据已知数据得到如下列联表:甲地乙地总计长纤维91625短纤维11415总计212141根据列联表中的数据,可得所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系” ()由表可知在8根中乙地“短纤维”的根数为,的可能取值为:1,1,2,3, , 的分布列为:1123 18、(1)点M的轨迹C的方程为,轨迹C是以,为焦点,长轴长为4的椭圆(2)【解析】(1)设,根据可求得,代入圆的方程可得所求轨迹方程;根据轨迹方程可知轨迹是以,为焦点,长轴长为的椭圆;(2)设,与椭圆方程联立,利用求得;利用韦达定理表示出与,根据平行四边形和向量的坐标运算求得,消去后得到轨迹方程;根据求得的取值范围,进而得到最终结果.【详解】(1)设,则由知:点在圆上 点的轨迹的方程为:轨迹是以,为焦点,长轴长为的椭圆(2)设,由题意知的斜率存在设,代入得:则,解得:设,则四边形为平行四边形又 ,消去得: 顶点的轨迹方程为【点睛】本题考查圆锥曲线中的轨迹方程的求解问题,关键是能够利用已知中所给的等量关系建立起动点横纵坐标满足的关系式,进而通过化简整理得到结果;易错点是求得轨迹方程后,忽略的取值范围.19、(1)(2)(3)【解析】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,根据古典概型求出即可;(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“,则(E),求出即可;(3)根据题意,写出即可【详解】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,有效问卷共有(份,其中受访者中膳食合理习惯良好的人数是人,故(A);(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,根据题意,可知(A),(B),(C),设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“则.所以该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯至少具备2个良好习惯的概率为0.766.(3)【点睛】本题考查了古典概型求概率,独立性事件,互斥性事件求概率等,考查运算能力和事件应用能力,中档题20、(1);(2)当BP为cm时,+取得最小值【解析】(1)作AECD,垂足为E,则CE10,DE10,设BCx,根据得到,解得答案.(2)设BPt,则,故,设,求导得到函数单调性,得到最值.【详解】(1)作AECD,垂足为E,则CE10,DE10,设BCx,则,化简得,解之得,或(舍),(2)设BPt,则,设,令f'(t)0,因为,得,当时,f'(t)0,f(t)是减函数;当时,f'(t)0,f(t)是增函数,所以,当时,f(t)取得最小值,即tan(+)取得最小值,因为恒成立,所以f(t)0,所以tan(+)0,因为ytanx在上是增函数,所以当时,+取得最小值【点睛】本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力.21、见解析【解析】试题分析:把不等式的左边写成形式,利用柯西不等式即证试题解析:证明:,又,考点:柯西不等式22、 (1)见解析;(2).【解析】试题分析:(1)利用平方法消去参数,即可得到的普通方程,两边同乘以利用 即可得的直角坐标方程;(2)设直线的参数方程为(为参数),代入,利用韦达定理、直线参数方程的几何意义以及三角函数的有界性可得结果.试题解析:(1)曲线的普通方程为,曲线的直角坐标方程为 ; (2)设直线的参数方程为(为参数)又直线与曲线:存在两个交点,因此. 联立直线与曲线:可得则联立直线与曲线:可得,则即