欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    浙江省台州温岭市第三中学2023年中考数学最后冲刺模拟试卷含解析.doc

    • 资源ID:88313410       资源大小:701.50KB        全文页数:22页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    浙江省台州温岭市第三中学2023年中考数学最后冲刺模拟试卷含解析.doc

    2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x22如果边长相等的正五边形和正方形的一边重合,那么1的度数是( )A30°B15°C18°D20°3下列各式正确的是()A(2018)=2018B|2018|=±2018C20180=0D20181=20184四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )AB1CD5如图是一个空心圆柱体,其俯视图是( )A B C D6下列运算正确的是()A(a1)a1B(2a3)24a6C(ab)2a2b2Da3+a22a57已知反比例函数y=,当1x3时,y的取值范围是()A0y1B1y2C2y1D6y28如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果下面有三个推断:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1其中合理的是()ABCD9(2016福建省莆田市)如图,OP是AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定POCPOD的选项是()APCOA,PDOBBOC=ODCOPC=OPDDPC=PD10方程有两个实数根,则k的取值范围是( )Ak1Bk1Ck>1Dk<1二、填空题(共7小题,每小题3分,满分21分)11若正六边形的内切圆半径为2,则其外接圆半径为_12如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_13(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是_14解不等式组 请结合题意填空,完成本题的解答(1)解不等式,得_;(2)解不等式,得_;(3)把不等式和的解集在数轴上表示出来;(4)原不等式组的解集为_15如图,直线 ab,直线 c 分别于 a,b 相交,1=50°,2=130°,则3 的度数为( )A50°B80°C100°D130°16如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成若较短的直角边BC5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若BCD的周长是30,则这个风车的外围周长是_17有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是_(用含字母x和n的代数式表示)三、解答题(共7小题,满分69分)18(10分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,O是PAD的外接圆 (1)求证:AB是O的切线; (2)若AC=8,tanBAC=,求O的半径19(5分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.20(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,APB=CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使APB=CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明)21(10分)如图1,抛物线y1=ax1x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GMx轴于点M将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与AMG全等,求直线PR的解析式22(10分)新农村社区改造中,有一部分楼盘要对外销售某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送请写出售价y(元/米2)与楼层x(1x23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算23(12分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数24(14分)如图,在平行四边形ABCD中,连接AC,做ABC的外接圆O,延长EC交O于点D,连接BD、AD,BC与AD交于点F分,ABC=ADB。(1)求证:AE是O的切线;(2)若AE=12,CD=10,求O的半径。参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键2、C【解析】1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解【详解】正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,1=108°-90°=18°故选C【点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键3、A【解析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答【详解】选项A,(2018)=2018,故选项A正确;选项B,|2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,20181= ,故选项D错误故选A【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.4、A【解析】在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.5、D【解析】根据从上边看得到的图形是俯视图,可得答案【详解】该空心圆柱体的俯视图是圆环,如图所示:故选D【点睛】本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.6、B【解析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解【详解】解:A、因为(a1)=a+1,故本选项错误;B、(2a3)2=4a6,正确;C、因为(ab)2=a22ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误故选B【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键7、D【解析】根据反比例函数的性质可以求得y的取值范围,从而可以解答本题【详解】解:反比例函数y=,在每个象限内,y随x的增大而增大,当1x3时,y的取值范围是6y1故选D【点睛】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答8、B【解析】当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;由图可知频数稳定在了0.618,所以估计频率为0.618,正确;.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.9、D【解析】试题分析:对于A,由PCOA,PDOB得出PCO=PDO=90°,根据AAS判定定理可以判定POCPOD;对于B OC=OD,根据SAS判定定理可以判定POCPOD;对于C,OPC=OPD,根据ASA判定定理可以判定POCPOD;,对于D,PC=PD,无法判定POCPOD,故选D考点:角平分线的性质;全等三角形的判定10、D【解析】当k=1时,原方程不成立,故k1,当k1时,方程为一元二次方程此方程有两个实数根,解得:k1综上k的取值范围是k1故选D二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据题意画出草图,可得OG=2,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接、,作于;则,六边形正六边形,是等边三角形,正六边形的内切圆半径为2,则其外接圆半径为故答案为【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.12、20 cm【解析】将杯子侧面展开,建立A关于EF的对称点A,根据两点之间线段最短可知AB的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A,连接AB,则AB即为最短距离根据勾股定理,得(cm)故答案为:20cm.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键同时也考查了同学们的创造性思维能力13、10,【解析】解:如图,过点A作ADBC于点D,ABC边AB=AC=10,BC=12,BD=DC=6,AD=8,如图所示:可得四边形ACBD是矩形,则其对角线长为:10;如图所示:AD=8,连接BC,过点C作CEBD于点E,则EC=8,BE=2BD=12,则BC=;如图所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC=故答案为10,14、(1)x1;(2)x2;(1)见解析;(4)2x1;【解析】(1)先移项,再合并同类项,求出不等式1的解集即可;(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;(1)把两不等式的解集在数轴上表示出来即可;(4)根据数轴上不等式的解集,求出其公共部分即可.【详解】(1)解不等式,得:x1;(2)解不等式,得:x2;(1)把不等式和的解集在数轴上表示出来如下:(4)原不等式组的解集为:2x1,故答案为:x1、x2、2x1【点睛】本题主要考查一元一次不等式组的解法及在数轴上的表示。15、B【解析】根据平行线的性质即可解决问题【详解】ab,1+3=2,1=50°,2=130°,3=80°, 故选B【点睛】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题16、71【解析】分析:由题意ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,BCD的周长是30,x+2y+5=30则x=13,y=1这个风车的外围周长是:4(x+y)=4×19=71故答案是:71点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题17、【解析】试题分析:根据题意得;根据以上规律可得:=.考点:规律题.三、解答题(共7小题,满分69分)18、 (1)见解析;(2)【解析】分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OPAD,AE=DE,则1+OPA=90°,而OAP=OPA,所以1+OAP=90°,再根据菱形的性质得1=2,所以2+OAP=90°,然后根据切线的判定定理得到直线AB与O相切; (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tanDAC=,得到DF=2,根据勾股定理得到AD=2,求得AE=,设O的半径为R,则OE=R,OA=R,根据勾股定理列方程即可得到结论详解:(1)连结OP、OA,OP交AD于E,如图, PA=PD,弧AP=弧DP,OPAD,AE=DE,1+OPA=90° OP=OA,OAP=OPA,1+OAP=90° 四边形ABCD为菱形,1=2,2+OAP=90°,OAAB,直线AB与O相切; (2)连结BD,交AC于点F,如图, 四边形ABCD为菱形,DB与AC互相垂直平分 AC=8,tanBAC=,AF=4,tanDAC=,DF=2,AD=2,AE=在RtPAE中,tan1=,PE=设O的半径为R,则OE=R,OA=R在RtOAE中,OA2=OE2+AE2,R2=(R)2+()2,R=,即O的半径为 点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线也考查了菱形的性质和锐角三角函数以及勾股定理19、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】(1)将A(1,0)、C(0,3)两点坐标代入抛物线yax2bx3a中,列方程组求a、b的值即可;(2)将点D(m,m1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;(3)分两种情形过点C作CPBD,交x轴于P,则PCBCBD,连接BD,过点C作CPBD,交x轴于P,分别求出直线CP和直线CP的解析式即可解决问题【详解】解:(1)将A(1,0)、C(0,3)代入抛物线yax2bx3a中,得 ,解得 yx22x3;(2)将点D(m,m1)代入yx22x3中,得m22m3m1,解得m2或1,点D(m,m1)在第四象限,D(2,3),直线BC解析式为yx3,BCDBCO45°,CDCD2,OD321,点D关于直线BC对称的点D'(0,1);(3)存在满足条件的点P有两个过点C作CPBD,交x轴于P,则PCBCBD,直线BD解析式为y3x9,直线CP过点C,直线CP的解析式为y3x3,点P坐标(1,0),连接BD,过点C作CPBD,交x轴于P,PCBDBC,根据对称性可知DBCCBD,PCBCBD,直线BD的解析式为直线CP过点C,直线CP解析式为,P坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0)【点睛】本题考查了二次函数的综合运用关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解20、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EHFG,EH=FG即可(2)四边形EFGH是菱形先证明APCBPD,得到AC=BD,再证明EF=FG即可(3)四边形EFGH是正方形,只要证明EHG=90°,利用APCBPD,得ACP=BDP,即可证明COD=CPD=90°,再根据平行线的性质即可证明【详解】(1)证明:如图1中,连接BD点E,H分别为边AB,DA的中点,EHBD,EH=BD,点F,G分别为边BC,CD的中点,FGBD,FG=BD,EHFG,EH=GF,中点四边形EFGH是平行四边形(2)四边形EFGH是菱形证明:如图2中,连接AC,BDAPB=CPD,APB+APD=CPD+APD,即APC=BPD,在APC和BPD中,AP=PB,APC=BPD,PC=PD,APCBPD,AC=BD点E,F,G分别为边AB,BC,CD的中点,EF=AC,FG=BD,四边形EFGH是平行四边形,四边形EFGH是菱形(3)四边形EFGH是正方形证明:如图2中,设AC与BD交于点OAC与PD交于点M,AC与EH交于点NAPCBPD,ACP=BDP,DMO=CMP,COD=CPD=90°,EHBD,ACHG,EHG=ENO=BOC=DOC=90°,四边形EFGH是菱形,四边形EFGH是正方形考点:平行四边形的判定与性质;中点四边形21、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,);(3)y=x+或y=【解析】(1)应用待定系数法求解析式;(1)设出点T坐标,表示TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与AMG全等,分类讨论对应边相等的可能性即可【详解】解:(1)由已知,c=,将B(1,0)代入,得:a=0,解得a=,抛物线解析式为y1=x1- x+,抛物线y1平移后得到y1,且顶点为B(1,0),y1=(x1)1,即y1=-x1+ x-;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(3,0),C(0,),过点T作TEy轴于E,则TC1=TE1+CE1=11+()1=t1t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,当TC=AC时,t1t+=,解得:t1=,t1=;当TA=AC时,t1+16=,无解;当TA=TC时,t1t+=t1+16,解得t3=;当点T坐标分别为(1,),(1,),(1,)时,TAC为等腰三角形;(3)如图1:设P(m,),则Q(m,),Q、R关于x=1对称R(1m,),当点P在直线l左侧时,PQ=1m,QR=11m,PQR与AMG全等,当PQ=GM且QR=AM时,m=0,P(0,),即点P、C重合,R(1,),由此求直线PR解析式为y=x+,当PQ=AM且QR=GM时,无解;当点P在直线l右侧时,同理:PQ=m1,QR=1m1,则P(1,),R(0,),PQ解析式为:y=;PR解析式为:y=x+或y=【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键22、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算【解析】解:(1)当1x8时,每平方米的售价应为:y=4000(8x)×30="30x+3760" (元/平方米)当9x23时,每平方米的售价应为:y=4000+(x8)×50=50x+3600(元/平方米)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(18%)a=485760a(元),按照方案二所交房款为:W2=4400×120×(110%)=475200(元),当W1W2时,即485760a475200,解得:0a10560,当W1W2时,即485760a475200,解得:a10560,当0a10560时,方案二合算;当a10560时,方案一合算【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键23、 (1)200;(2)见解析;(3)126°;(4)240人【解析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)喜欢文史类的人数为76人,占总人数的38%,此次调查的总人数为:76÷38%200人,故答案为200;(2)喜欢生活类书籍的人数占总人数的15%,喜欢生活类书籍的人数为:200×15%30人,喜欢小说类书籍的人数为:20024763070人,如图所示:(3)喜欢社科类书籍的人数为:24人,喜欢社科类书籍的人数占了总人数的百分比为:×100%12%,喜欢小说类书籍的人数占了总分数的百分比为:100%15%38%12%35%,小说类所在圆心角为:360°×35%126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%240人【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键24、(1)证明见解析;(2)【解析】(1)作辅助线,先根据垂径定理得:OABC,再证明OAAE,则AE是O的切线;(2)连接OC,证明ACEDAE,得,计算CE的长,设O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论【详解】(1)证明:连接OA,交BC于G,ABC=ADBABC=ADE,ADB=ADE,OABC,四边形ABCE是平行四边形,AEBC,OAAE,AE是O的切线;(2)连接OC,AB=AC=CE,CAE=E,四边形ABCE是平行四边形,BCAE,ABC=E,ADC=ABC=E,ACEDAE,AE=12,CD=10,AE2=DECE,144=(10+CE)CE,解得:CE=8或-18(舍),AC=CE=8,RtAGC中,AG=2,设O的半径为r,由勾股定理得:r2=62+(r-2)2,r=,则O的半径是【点睛】此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键

    注意事项

    本文(浙江省台州温岭市第三中学2023年中考数学最后冲刺模拟试卷含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开