海南省临高县美台中学2023年中考数学全真模拟试题含解析.doc
-
资源ID:88314446
资源大小:652KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
海南省临高县美台中学2023年中考数学全真模拟试题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家妈妈8:30从家出发,乘车沿相同路线去姥姥家在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示根据图象得出下列结论,其中错误的是()A小亮骑自行车的平均速度是12 km/hB妈妈比小亮提前0.5 h到达姥姥家C妈妈在距家12 km处追上小亮D9:30妈妈追上小亮2关于的方程有实数根,则整数的最大值是( )A6B7C8D93“射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件4一元二次方程x2+2x15=0的两个根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=55在a24a4的空格中,任意填上“+”或“”,在所有得到的代数式中,能构成完全平方式的概率是( )A1 B C D6在函数y=中,自变量x的取值范围是()Ax0Bx0Cx=0D任意实数7抛物线ymx28x8和x轴有交点,则m的取值范围是()Am2Bm2Cm2且m0Dm2且m08某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A20%B11%C10%D9.5%9潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖其中,数字2000亿元用科学记数法表示为()元(精确到百亿位)A2×1011 B2×1012 C2.0×1011 D2.0×101010如图,函数ykxb(k0)与y (m0)的图象交于点A(2,3),B(6,1),则不等式kxb的解集为()ABCD11不等式组的解集是()Ax1Bx2C1x2D1x212碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米0.000000001米,则0.5纳米用科学记数法表示为()A0.5×109米B5×108米C5×109米D5×1010米二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在RtABC中,ACB90°,ABC30°,将ABC绕点C顺时针旋转至ABC,使得点A恰好落在AB上,则旋转角度为_14不等式组的解集是_15如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_16化简÷=_17如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去,试用图形揭示的规律计算:_18分解因式8x2y2y_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P(1)求这条抛物线的表达式和顶点P的坐标; (2)抛物线的对称轴与x轴相交于点M,求PMC的正切值;(3)点Q在y轴上,且BCQ与CMP相似,求点Q的坐标20(6分)某街道需要铺设管线的总长为9000,计划由甲队施工,每天完成150工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队如图表示剩余管线的长度与甲队工作时间(天)之间的函数关系图象(1)直接写出点的坐标;(2)求线段所对应的函数解析式,并写出自变量的取值范围;(3)直接写出乙队工作25天后剩余管线的长度21(6分)如图,在RtABC中,C90°,以BC为直径作O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是O的切线22(8分)动画片小猪佩奇分靡全球,受到孩子们的喜爱.现有4张小猪佩奇角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.23(8分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人孔明同学调查的这组学生共有_人;这组数据的众数是_元,中位数是_元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?24(10分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(3,0),点C的坐标为(0,3),对称轴为直线x1(1)求抛物线的解析式;(2)若点P在抛物线上,且SPOC4SBOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值25(10分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距例:如图,在ABC中,D为边BC的中点,AEBC于E,则线段DE的长叫做边BC的中垂距(1)设三角形一边的中垂距为d(d0)若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图,在ABC中,B=15°,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距(3)如图,在矩形ABCD中,AB=6,AD=1点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC求ACF中边AF的中垂距26(12分)关于的一元二次方程有实数根求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值27(12分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A放下自我,彼此尊重; B放下利益,彼此平衡;C放下性格,彼此成就; D合理竞争,合作双赢要求每人选取其中一个观点写出自己的感悟根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率Aa0.2B120.24C8bD200.4(1)参加本次讨论的学生共有 人;表中a ,b ;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为108=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答【详解】解:A、根据函数图象小亮去姥姥家所用时间为108=2小时,小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,109.5=0.5(小时),妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为98=1小时,小亮走的路程为:1×12=12km,妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.2、C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则0,求出a的取值范围,取最大整数即可【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=;当a-60,即a6时,=(-1)2-4(a-6)×6=201-24a0,解上式,得1.6,取最大整数,即a=1故选C3、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件4、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.5、B【解析】试题解析:能够凑成完全平方公式,则4a前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是故选B考点:1概率公式;2完全平方式6、C【解析】当函数表达式是二次根式时,被开方数为非负数据此可得【详解】解:根据题意知 ,解得:x=0,故选:C【点睛】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数7、C【解析】根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:抛物线和轴有交点, ,解得:且故选【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键8、C【解析】设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为根据题意,得=1解得,(不合题意,舍去)答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.9、C【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】2000亿元=2.0×1故选:C【点睛】考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、B【解析】根据函数的图象和交点坐标即可求得结果【详解】解:不等式kx+b 的解集为:-6x0或x2,故选B【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用11、D【解析】由x1得,x1,由3x51得,3x6,x2,不等式组的解集为1x2,故选D12、D【解析】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×1010米故选D点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).二、填空题:(本大题共6个小题,每小题4分,共24分)13、60°【解析】试题解析:ACB=90°,ABC=30°,A=90°-30°=60°,ABC绕点C顺时针旋转至ABC时点A恰好落在AB上,AC=AC,AAC是等边三角形,ACA=60°,旋转角为60°故答案为60°.14、2x1【解析】分别解两个不等式得到x1和x2,然后根据大小小大中间找确定不等数组的解集【详解】解:,解得x1,解得x2,所以不等式组的解集为2x1故答案为2x1【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到15、(4,2)【解析】利用图象旋转和平移可以得到结果.【详解】解:CDO绕点C逆时针旋转90°,得到CBD,则BD=OD=2,点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到OAD,点D向下平移4个单位故点D坐标为(4,2),故答案为(4,2)【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.16、x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=÷ =(x+1)(x1)=x+1,故答案为x+1点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.17、【解析】结合图形发现计算方法: ,即计算其面积和的时候,只需让总面积减去剩下的面积.【详解】解:原式= 故答案为:【点睛】此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.18、2y(2x+1)(2x1)【解析】首先提取公因式2y,再利用平方差公式分解因式得出答案【详解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1)故答案为2y(2x+1)(2x-1)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(1,4)(2)(0,)或(0,-1)【解析】试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;(2)由OC/PM,可得PMC=MCO,求tanMCO即可 ;(3)分情况进行讨论即可得.试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),OC=3,OA=OC,OA=3,A(3,0),A、B关于x=1对称,B(-1,0),A、B在抛物线y=ax2+bx+3上, , ,抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,顶点P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),OC=3,OM=1,OC/PM,PMC=MCO,tanPMC=tanMCO= = ;(3)Q在C点的下方,BCQ=CMP,CM=,PM=4,BC=,或 ,CQ=或4,Q1(0,),Q2(0,-1).20、(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10x40.(3)1250米.【解析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得: 直线BC的解析式为y=-250x+10000,乙队是10天之后加入,40天完成,自变量x的取值范围为10x40.(3)依题意,当x=35时,y=-250×35+10000=1250.乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.21、详见解析.【解析】试题分析:由三角形的中位线得出OEAB,进一步利用平行线的性质和等腰三角形性质,找出OCE和ODE相等的线段和角,证得全等得出答案即可试题解析:证明:点E为AC的中点,OC=OB,OEAB,EOC=B,EOD=ODB又ODB=B,EOC=EOD在OCE和ODE中,OC=OD,EOC=EOD, OE=OE,OCEODE(SAS),EDO=ECO=90°,DEOD,DE是O的切线点睛:此题考查切线的判定证明的关键是得到OCEODE22、(1);(2) 【解析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答【详解】(1);(2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下: 弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).P(姐姐抽到A佩奇,弟弟抽到B乔治)【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比23、(1)60;(2)20,20;(3)38000【解析】(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x+10x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,120出现次数最多,众数为20元;共有60个数据,第30个和第31个数据落在第四组内,中位数为20元;(3)2000=38000(元),估算全校学生共捐款38000元【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来也考查了样本估计总体、中位数与众数24、(1)yx2+2x3;(2)点P的坐标为(2,21)或(2,5);(3)【解析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|然后依据SPOC2SBOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可【详解】解:(1)抛物线与x轴的交点A(3,0),对称轴为直线x1,抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为ya(x+3)(x1),将点C(0,3)代入,得:3a3,解得a1,则抛物线解析式为y(x+3)(x1)x2+2x3;(2)设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|SPOC2SBOC,OC|a|2×OCOB,即×3×|a|2××3×1,解得a±2当a2时,点P的坐标为(2,21);当a2时,点P的坐标为(2,5)点P的坐标为(2,21)或(2,5)(3)如图所示:设AC的解析式为ykx3,将点A的坐标代入得:3k30,解得k1,直线AC的解析式为yx3设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3)QDx3( x2+2x3)x3x22x+3x23x(x2+3x+)(x+)2+, 当x时,QD有最大值,QD的最大值为【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用25、(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3). 【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断(2)如图中,作AEBC于E根据已知得出AE=BE,再求出BD的长,即可求出DE的长(3)如图中,作CHAF于H,先证ADEFCE,得出AE=EF,利用勾股定理求出AE的长,然后证明ADECHE,建立方程求出EH即可解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图中,作AEBC于E在RtABE中,AEB=90°,B=15°,AB=3 ,AE=BE=3,AD为BC边中线,BC=8,BD=DC=1,DE=BDBE=13=1,边BC的中垂距为1(3)解:如图中,作CHAF于H四边形ABCD是矩形,D=EHC=ECF=90°,ADBF,DE=EC,AED=CEF,ADEFCE,AE=EF,在RtADE中,AD=1,DE=3,AE= =5,D=EHC,AED=CEH,ADECHE, = , = ,EH= ,ACF中边AF的中垂距为 26、(1);(2)的值为【解析】(1)利用判别式的意义得到,然后解不等式即可;(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足【详解】解:(1)根据题意得,解得;(2)的最大整数为2,方程变形为,解得,一元二次方程与方程有一个相同的根,当时,解得;当时,解得,而,的值为【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根27、(1)50、10、0.16;(2)144°;(3).【解析】(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,(2)用360°乘以D观点的频率即可得;(3)画出树状图,然后根据概率公式列式计算即可得解【详解】解:(1)参加本次讨论的学生共有12÷0.24=50,则a=50×0.2=10,b=8÷50=0.16,故答案为50、10、0.16;(2)D所在扇形的圆心角的度数为360°×0.4=144°;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为【点睛】此题考查了列表法或树状图法求概率以及条形统计图用到的知识点为:概率=所求情况数与总情况数之比