陕西省西安市未央区重点中学2023年中考适应性考试数学试题含解析.doc
-
资源ID:88314653
资源大小:759KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
陕西省西安市未央区重点中学2023年中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,若2=40°,则图中1的度数为( )A115°B120°C130°D140°2若二次函数的图像与轴有两个交点,则实数的取值范围是( )ABCD3今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为()A83×105B0.83×106C8.3×106D8.3×1074在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A平均数B众数C方差D标准差5一组数据1,2,3,3,4,1若添加一个数据3,则下列统计量中,发生变化的是()A平均数B众数C中位数D方差6一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数从左面看到的这个几何体的形状图的是()ABCD7如图,一段抛物线:y=x(x5)(0x5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )A4B4C6D68如图数轴的A、B、C三点所表示的数分别为a、b、c若|ab|3,|bc|5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A在A的左边B介于A、B之间C介于B、C之间D在C的右边9如图,点M是正方形ABCD边CD上一点,连接MM,作DEAM于点E,BFAM于点F,连接BE,若AF1,四边形ABED的面积为6,则EBF的余弦值是()ABCD10如图,AB是的直径,点C,D在上,若,则的度数为ABCD二、填空题(共7小题,每小题3分,满分21分)11按照一定规律排列依次为,.按此规律,这列数中的第100个数是_12如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,按此规律进行下去,则点A3的横坐标为_;点A2018的横坐标为_13如图,ABC中,点D、E分别在边AB、BC上,DEAC,若DB=4,AB=6,BE=3,则EC的长是_14已知直线mn,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若1=20°,则2=_度15如图,AC是以AB为直径的O的弦,点D是O上的一点,过点D作O的切线交直线AC于点E,AD平分BAE,若AB=10,DE=3,则AE的长为_16抛物线y=x2+2x+m1与x轴有交点,则m的取值范围是_17如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(3,2),(b,m),(c,m),则点E的坐标是_三、解答题(共7小题,满分69分)18(10分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?19(5分)已知:如图,AB=AE,1=2,B=E求证:BC=ED20(8分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:学生体能测试成绩各等次人数统计表体能等级调整前人数调整后人数优秀8 良好16 及格12 不及格4 合计40 (1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数21(10分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上(1)MN是否穿过原始森林保护区,为什么?(参考数据:1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且PBD是以BD为直角边的直角三角形,求点P的坐标23(12分)如图,抛物线y=ax2+bx(a0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上设A(t,0),当t=2时,AD=1求抛物线的函数表达式当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离24(14分)先化简,再求值:÷(a),其中a=3tan30°+1,b=cos45°参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】解:把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,BFE=EFB',B'=B=90°2=40°,CFB'=50°,1+EFB'CFB'=180°,即1+150°=180°,解得:1=115°,故选A2、D【解析】由抛物线与x轴有两个交点可得出=b2-4ac0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围【详解】抛物线y=x2-2x+m与x轴有两个交点,=b2-4ac=(-2)2-4×1×m0,即4-4m0,解得:m1故选D【点睛】本题考查了抛物线与x轴的交点,牢记“当=b2-4ac0时,抛物线与x轴有2个交点”是解题的关键3、C【解析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1| a| 10|)的记数法.【详解】830万=8300000=8.3×106.故选C【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.4、B【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数 故选B点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用5、D【解析】A. 原平均数是:(1+2+3+3+4+1) ÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;平均数不发生变化.B. 原众数是:3;添加一个数据3后的众数是:3;众数不发生变化;C. 原中位数是:3;添加一个数据3后的中位数是:3;中位数不发生变化;D. 原方差是:;添加一个数据3后的方差是:;方差发生了变化.故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键6、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1据此可画出图形详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B点睛:此题主要考查了几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字7、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=4032,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可详解:当y=0时,x(x5)=0,解得x1=0,x2=5,则A1(5,0),OA1=5,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;如此进行下去,得到一“波浪线”,A1A2=A2A3=OA1=5,抛物线C404的解析式为y=(x5×403)(x5×404),即y=(x2015)(x2020),当x=2018时,y=(20182015)(20182020)=1,即m=1故选C点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键8、C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论解析:|ab|=3,|bc|=5,b=a+3,c=b+5,原点O与A、B的距离分别为1、1,a=±1,b=±1,b=a+3,a=1,b=1,c=b+5,c=1点O介于B、C点之间故选C点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键9、B【解析】首先证明ABFDEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于ABE的面积与ADE的面积之和得到xx+x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解【详解】四边形ABCD为正方形,BAAD,BAD90°,DEAM于点E,BFAM于点F,AFB90°,DEA90°,ABF+BAF90°,EAD+BAF90°,ABFEAD,在ABF和DEA中 ABFDEA(AAS),BFAE;设AEx,则BFx,DEAF1,四边形ABED的面积为6,解得x13,x24(舍去),EFx12,在RtBEF中,故选B【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质会运用全等三角形的知识解决线段相等的问题也考查了解直角三角形10、B【解析】试题解析:连接AC,如图,AB为直径,ACB=90°, 故选B点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据按一定规律排列的一列数依次为,可得第n个数为,据此可得第100个数【详解】由题意,数列可改写成,则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,第n个数为,这列数中的第100个数为;故答案为:【点睛】本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.12、 【解析】利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论【详解】当y=0时,有x-=0,解得:x=1,点B1的坐标为(1,0),A1OB1为等边三角形,点A1的坐标为(,)当y=时有x-=,解得:x=,点B2的坐标为(,),A2A1B2为等边三角形,点A2的坐标为(,)同理,可求出点A3的坐标为(,),点A2018的坐标为(,)故答案为;【点睛】本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键13、【解析】由ABC中,点D、E分别在边AB、BC上,DEAC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案【详解】解:DEAC,DB:AB=BE:BC,DB=4,AB=6,BE=3,4:6=3:BC,解得:BC=,EC=BCBE=3=故答案为【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例14、1【解析】根据平行线的性质即可得到2=ABC+1,据此进行计算即可【详解】解:直线mn,2=ABC+1=30°+20°=1°,故答案为:1【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键15、1或9【解析】(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示ODOA,OADODA,AD平分BAE,OADODADAC,OD/AE,DE是圆的切线,DEOD,ODE=E=90o,四边形ODEF是矩形,OFDE,EFOD5,又OFAC,AF,AEAF+EF5+49.(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示同(1)可得:EFOD5,OFDE3,在直角三角形AOF中,AF,AEEFAF541.16、m1【解析】由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式0,即可得出关于m的一元一次不等式,解之即可得出结论【详解】关于x的一元二次方程x1+1x+m1=0有解,=114(m1)=84m0,解得:m1.故答案为:m1.【点睛】本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.17、(3,2)【解析】根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标【详解】解:如图所示:A(0,a),点A在y轴上,C,D的坐标分别是(b,m),(c,m),B,E点关于y轴对称,B的坐标是:(3,2),点E的坐标是:(3,2)故答案为:(3,2)【点睛】此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键三、解答题(共7小题,满分69分)18、(1)答案见解析;(2)【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率19、证明见解析.【解析】由1=2可得CAB =DAE,再根据ASA证明ABCAED,即可得出答案.【详解】1=2,1+BAD=2+BAD,CAB=DAE,在ABC与AED中,B=E,AB=AE,CAB=DAE,ABCAED,BC=ED.20、(1)12;22;12;4;50;(2)详见解析;(3)1【解析】(1)求出各自的人数,补全表格即可;(2)根据调整后的数据,补全条形统计图即可;(3)根据“游戏”人数占的百分比,乘以1500即可得到结果【详解】解:(1)填表如下:体能等级调整前人数调整后人数优秀812良好1622及格1212不及格44合计4050故答案为12;22;12;4;50;(2)补全条形统计图,如图所示:(3)抽取的学生中体能测试的优秀率为24%,则该校体能测试为“优秀”的人数为1500×24%=1(人)【点睛】本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.21、(1)不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.【解析】试题分析:(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;(2)根据题意列方程求解试题解析:(1)如图,过C作CHAB于H,设CH=x,由已知有EAC=45°, FBC=60°则CAH=45°, CBA=30°,在RTACH中,AH=CH=x,在RTHBC中, tanHBC=HB=x,AH+HB=ABx+x=600解得x220(米)>200(米)MN不会穿过森林保护区(2)设原计划完成这项工程需要y天,则实际完成工程需要y-5根据题意得:=(1+25)×,解得:y=25知:y=25的根答:原计划完成这项工程需要25天22、(1)B(0,1);(1)y=0.5x11x+1;(3)P1(1,0)和P1(7.15,0);【解析】(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1得出可设二次函数y=ax1+bx+c=a(x1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可【详解】(1)y=x+1交x轴于点A(4,0),0=×(4)+m,m=1,与y轴交于点B,x=0,y=1B点坐标为:(0,1),(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1可设二次函数y=a(x1)1把B(0,1)代入得:a=0.5二次函数的解析式:y=0.5x11x+1;(3)()当B为直角顶点时,过B作BP1AD交x轴于P1点由RtAOBRtBOP1,得:OP1=1,P1(1,0),()作P1DBD,连接BP1,将y=0.5x+1与y=0.5x11x+1联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时DAP1=BAO,BOA=ADP1,ABOAP1D, ,解得:AP1=11.15,则OP1=11.154=7.15,故P1点坐标为(7.15,0);点P的坐标为:P1(1,0)和P1(7.15,0) 【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解23、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位【解析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据ABCD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是OBD中位线,据此可得【详解】(1)设抛物线解析式为,当时,点的坐标为,将点坐标代入解析式得,解得:,抛物线的函数表达式为;(2)由抛物线的对称性得,当时,矩形的周长,当时,矩形的周长有最大值,最大值为;(3)如图,当时,点、的坐标分别为、,矩形对角线的交点的坐标为,直线平分矩形的面积,点是和的中点,由平移知,是的中位线,所以抛物线向右平移的距离是1个单位【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点24、,【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a的值,代入计算即可求出值解:原式=,当,原式=. “点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式