欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    湖北省武汉第三寄宿中学2023年中考五模数学试题含解析.doc

    • 资源ID:88316558       资源大小:1.05MB        全文页数:23页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    湖北省武汉第三寄宿中学2023年中考五模数学试题含解析.doc

    2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S9的值为( )A()6B()7C()6D()72如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分BAD,分别交BC、BD于点E、P,连接OE,ADC=60°,AB=BC=1,则下列结论:CAD=30°BD=S平行四边形ABCD=ABACOE=ADSAPO=,正确的个数是()A2B3C4D53下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )ABCD4如图,已知在RtABC中,ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:EDBC;A=EBA;EB平分AED;ED=AB中,一定正确的是( )ABCD5点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1x20x3,则y1,y2,y3的大小关系是()Ay1y2y3By2y3y1Cy3y2y1Dy2y1y36下列说法正确的是( )A对角线相等且互相垂直的四边形是菱形B对角线互相平分的四边形是正方形C对角线互相垂直的四边形是平行四边形D对角线相等且互相平分的四边形是矩形7如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()ABCD8去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A1.23×106B1.23×107C0.123×107D12.3×1059如图,在ABC中,C90°,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MNAB,MC6,NC,则四边形MABN的面积是( )ABCD10如图,PA和PB是O的切线,点A和B是切点,AC是O的直径,已知P40°,则ACB的大小是( )A60°B65°C70°D75°11下列运算结果正确的是()A(x3x2+x)÷x=x2x B(a2)a3=a6 C(2x2)3=8x6 D4a2(2a)2=2a212如图,ADBECF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB1,BC3,DE2,则EF的长为()A4B.5C6D8二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM若BAD=120°,AE=2,则DM=_14如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将ABE折叠,点A刚好落在BF上,若AB=2,则AD=_15图,A,B是反比例函数y=图象上的两点,过点A作ACy轴,垂足为C,AC交OB于点D若D为OB的中点,AOD的面积为3,则k的值为_16如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点若四边形EFGH为菱形,则对角线AC、BD应满足条件_17甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年品种甲9.89.910.11010.2甲乙9.410.310.89.79.8乙经计算,试根据这组数据估计_中水稻品种的产量比较稳定18如图,AGBC,如果AF:FB3:5,BC:CD3:2,那么AE:EC_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)据调查,超速行驶是引发交通事故的主要原因之一小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:1.41,1.73)20(6分)如图,ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD求证:平行四边形ABEF是菱形;若AB4,AD6,ABC60°,求tanADP的值21(6分)已知C为线段上一点,关于x的两个方程与的解分别为线段的长,当时,求线段的长;若C为线段的三等分点,求m的值.22(8分)如图,在ABC中,ABAC,以AB为直径作半圆O,交BC于点D,连接AD过点D作DEAC,垂足为点E求证:DE是O的切线;当O半径为3,CE2时,求BD长23(8分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°0.9,tan64°2)24(10分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点动点C、D分别在直线AB、OB上,将BCD沿着CD折叠,得B'CD()如图1,若CDAB,点B'恰好落在点A处,求此时点D的坐标;()如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;()若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可)25(10分)如图,AB是O的直径,点E是上的一点,DBC=BED(1)请判断直线BC与O的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC的长26(12分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根据上表中的数据,将下表补充完整:统计值数值人员平均数(万元)众数(万元)中位数(万元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.27(12分)如图,AB是O的直径,AC是O的切线,BC与O相交于点D,点E在O上,且DE=DA,AE与BC交于点F(1)求证:FD=CD;(2)若AE=8,tanE=,求O的半径参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:如图所示正方形ABCD的边长为2,CDE为等腰直角三角形,DE2+CE2=CD2,DE=CE,S2+S2=S1观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,由此可得Sn=()n2当n=9时,S9=()92=()6,故选A考点:勾股定理2、D【解析】先根据角平分线和平行得:BAE=BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:ABE是等边三角形,由外角的性质和等腰三角形的性质得:ACE=30°,最后由平行线的性质可作判断;先根据三角形中位线定理得:OE=AB=,OEAB,根据勾股定理计算OC=和OD的长,可得BD的长;因为BAC=90°,根据平行四边形的面积公式可作判断;根据三角形中位线定理可作判断;根据同高三角形面积的比等于对应底边的比可得:SAOE=SEOC=OEOC=,代入可得结论【详解】AE平分BAD,BAE=DAE,四边形ABCD是平行四边形,ADBC,ABC=ADC=60°,DAE=BEA,BAE=BEA,AB=BE=1,ABE是等边三角形,AE=BE=1,BC=2,EC=1,AE=EC,EAC=ACE,AEB=EAC+ACE=60°,ACE=30°,ADBC,CAD=ACE=30°,故正确;BE=EC,OA=OC,OE=AB=,OEAB,EOC=BAC=60°+30°=90°,RtEOC中,OC=,四边形ABCD是平行四边形,BCD=BAD=120°,ACB=30°,ACD=90°,RtOCD中,OD=,BD=2OD=,故正确;由知:BAC=90°,SABCD=ABAC,故正确;由知:OE是ABC的中位线,又AB=BC,BC=AD,OE=AB=AD,故正确;四边形ABCD是平行四边形,OA=OC=,SAOE=SEOC=OEOC=××,OEAB,SAOP= SAOE=,故正确;本题正确的有:,5个,故选D【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系3、B【解析】根据轴对称图形的概念对各选项分析判断即可得出答案【详解】A不是轴对称图形,故本选项错误;B是轴对称图形,故本选项正确;C不是轴对称图形,故本选项错误;D不是轴对称图形,故本选项错误故选B4、B【解析】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,D为BC的中点,PD垂直平分BC,EDBC正确.ABC=90°,PDAB.E为AC的中点,EC=EA,EB=EC.A=EBA正确;EB平分AED错误;ED=AB正确.正确的有.故选B考点:线段垂直平分线的性质.5、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1x20x1,判断出三点所在的象限,再根据函数的增减性即可得出结论【详解】反比例函数y=中,k=10,此函数图象的两个分支在一、三象限,x1x20x1,A、B在第三象限,点C在第一象限,y10,y20,y10,在第三象限y随x的增大而减小,y1y2,y2y1y1故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键6、D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理7、C【解析】由正方形的性质知DG=CG-CD=2、ADGF,据此证ADMFGM得 , 求出GM的长,再利用勾股定理求解可得答案【详解】解:四边形ABCD和四边形CEFG是正方形,AD=CD=BC=1、CE=CG=GF=3,ADM=G=90°,DG=CG-CD=2,ADGF,则ADMFGM,即 ,解得:GM= ,FM= = = ,故选:C【点睛】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点8、A【解析】分析:科学记数法的表示形式为的形式,其中为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数详解:1230000这个数用科学记数法可以表示为 故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.9、C【解析】连接CD,交MN于E,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MNCD,且CE=DECD=2CEMNAB,CDABCMNCAB在CMN中,C=90°,MC=6,NC=,故选C10、C【解析】试题分析:连接OB,根据PA、PB为切线可得:OAP=OBP=90°,根据四边形AOBP的内角和定理可得AOB=140°,OC=OB,则C=OBC,根据AOB为OBC的外角可得:ACB=140°÷2=70°.考点:切线的性质、三角形外角的性质、圆的基本性质.11、C【解析】根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得【详解】A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;B、(-a2)a3=-a5,此选项计算错误;C、(-2x2)3=-8x6,此选项计算正确;D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.故选:C【点睛】本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则12、C【解析】解:ADBECF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】作辅助线,构建直角DMN,先根据菱形的性质得:DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长【详解】解:过M作MNAD于N,四边形ABCD是菱形, EFAC,AE=AF=2,AFM=30°,AM=1,RtAMN中,AMN=30°, AD=AB=2AE=4, 由勾股定理得: 故答案为【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半14、【解析】如图,连接EF,点E、点F是AD、DC的中点,AE=ED,CF=DF=CD=AB=1,由折叠的性质可得AE=AE,AE=DE,在RtEAF和RtEDF中, ,RtEAFRtEDF(HL),AF=DF=1,BF=BA+AF=AB+DF=2+1=3,在RtBCF中,BC=AD=BC=2 点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明RtEAFRtEDF,得出BF的长,再利用勾股定理解答即可15、1【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据AOD的面积为3,列出关系式求得k的值解:设点D坐标为(a,b),点D为OB的中点,点B的坐标为(2a,2b),k=4ab,又ACy轴,A在反比例函数图象上,A的坐标为(4a,b),AD=4aa=3a,AOD的面积为3,×3a×b=3,ab=2,k=4ab=4×2=1故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据AOD的面积为1列出关系式是解题的关键16、AC=BD【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形试题解析:添加的条件应为:AC=BD证明:E,F,G,H分别是边AB、BC、CD、DA的中点,在ADC中,HG为ADC的中位线,所以HGAC且HG=AC;同理EFAC且EF=AC,同理可得EH=BD,则HGEF且HG=EF,四边形EFGH为平行四边形,又AC=BD,所以EF=EH,四边形EFGH为菱形考点:1菱形的性质;2三角形中位线定理17、甲【解析】根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.【详解】甲种水稻产量的方差是:,乙种水稻产量的方差是:,0.020.124.产量比较稳定的小麦品种是甲.18、3:2;【解析】由AG/BC可得AFG与BFD相似 ,AEG与CED相似,根据相似比求解.【详解】假设:AF3x,BF5x ,AFG与BFD相似AG3y,BD5y由题意BC:CD3:2则CD2yAEG与CED相似AE:EC AG:DC3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、此车没有超过了该路段16m/s的限制速度【解析】分析:根据直角三角形的性质和三角函数得出DB,DA,进而解答即可详解:由题意得:DCA=60°,DCB=45°,在RtCDB中,tanDCB=,解得:DB=200,在RtCDA中,tanDCA=,解得:DA=200,AB=DADB=200200146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度点睛:本题考查了解直角三角形的应用方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般20、(1)详见解析;(2)tanADP【解析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PHAD于H,根据四边形ABEF是菱形,ABC60°,AB4,得到ABAF4,ABFADB30°,APBF,从而得到PH,DH5,然后利用锐角三角函数的定义求解即可【详解】(1)证明:AE垂直平分BF,ABAF,BAEFAE,四边形ABCD是平行四边形,ADBCFAEAEB,AEBBAE,ABBE,AFBEAFBC,四边形ABEF是平行四边形ABBE,四边形ABEF是菱形;(2)解:作PHAD于H,四边形ABEF是菱形,ABC60°,AB4,ABAF4,ABFAFB30°,APBF,APAB2,PH,DH5,tanADP【点睛】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大21、(1);(2)或1.【解析】(1)把m=2代入两个方程,解方程即可求出AC、BC的长,由C为线段上一点即可得AB的长;(2)分别解两个方程可得,根据为线段的三等分点分别讨论为线段靠近点的三等分点和为线段靠近点的三等分点两种情况,列关于m的方程即可求出m的值.【详解】(1)当时,有,由方程,解得,即.由方程,解得,即.因为为线段上一点,所以.(2)解方程,得,即.解方程,得,即.当为线段靠近点的三等分点时,则,即,解得.当为线段靠近点的三等分点时,则,即,解得.综上可得,或1.【点睛】本题考查一元一次方程的几何应用,注意讨论C点的位置,避免漏解是解题关键.22、(1)证明见解析;(2)BD2【解析】(1)连接OD,AB为0的直径得ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为ABC的中位线,所以ODAC,而DEAC,则ODDE,然后根据切线的判定方法即可得到结论;(2)由B=C,CED=BDA=90°,得出DECADB,得出,从而求得BDCD=ABCE,由BD=CD,即可求得BD2=ABCE,然后代入数据即可得到结果【详解】(1)证明:连接OD,如图,AB为0的直径,ADB90°,ADBC,ABAC,AD平分BC,即DBDC,OAOB,OD为ABC的中位线,ODAC,DEAC,ODDE,DE是0的切线;(2)BC,CEDBDA90°,DECADB,BDCDABCE,BDCD,BD2ABCE,O半径为3,CE2,BD2【点睛】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线也考查了等腰三角形的性质、三角形相似的判定和性质23、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度试题解析:(1)在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,设DE=5x米,则EC=12x米,(5x)2+(12x)2=132,解得:x=1,5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知BDH=45°,BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,tan64°=,2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米24、(1)D(0,);(1)C(116,1118);(3)B'(1+,0),(1,0).【解析】(1)设OD为x,则BD=AD=3,在RTODA中应用勾股定理即可求解;(1)由题意易证BDCBOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CEAO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=BC,再利用特殊角的三角函数可逐一求解.【详解】()设OD为x,点A(3,0),点B(0,),AO=3,BO=AB=6折叠BD=DA在RtADO中,OA1+OD1=DA19+OD1=(OD)1OD=D(0,)()折叠BDC=CDO=90°CDOA且BD=AC,BD=18OD=(18)=18tanABO=,ABC=30°,即BAO=60°tanABO=,CD=116D(116,1118)()如图:过点C作CEAO于ECEAOOE=1,且AO=3AE=1,CEAO,CAE=60°ACE=30°且CEAOAC=1,CE=BC=ABACBC=61=4若点B'落在A点右边,折叠BC=B'C=4,CE=,CEOAB'E=OB'=1+B'(1+,0)若点B'落在A点左边,折叠BC=B'C=4,CE=,CEOAB'E=OB'=1B'(1,0)综上所述:B'(1+,0),(1,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B点的两种情况是解题关键.25、(1)BC与相切;理由见解析;(2)BC=6【解析】试题分析:(1)BC与相切;由已知可得BAD=BED又由DBC=BED可得BAD=DBC,由AB为直径可得ADB=90°,从而可得CBO=90°,继而可得BC与相切(2)由AB为直径可得ADB=90°,从而可得BDC=90°,由BC与相切,可得CBO=90°,从而可得BDC=CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)试题解析:(1)BC与相切;,BAD=BED ,DBC=BED,BAD=DBC,AB为直径,ADB=90°,BAD+ABD=90°,DBC+ABD=90°,CBO=90°,点B在上,BC与相切(2)AB为直径,ADB=90°,BDC=90°,BC与相切,CBO=90°,BDC=CBO,AC=9,BC=6(BC="-6" 舍去)考点:1切线的判定与性质;2相似三角形的判定与性质;3勾股定理26、(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.【解析】(1)利用平均数、众数、中位数的定义和方差的计算公式求解;(2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.【详解】(1)甲的平均数;乙的众数为9;丙的中位数为9,丙的方差;故答案为8.2;9;9;6.4;(2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.27、(1)证明见解析;(2);【解析】(1)先利用切线的性质得出CAD+BAD=90°,再利用直径所对的圆周角是直角得出B+BAD=90°,从而可证明B=EAD,进而得出EAD=CAD,进而判断出ADFADC,即可得出结论;(2)过点D作DGAE,垂足为G依据等腰三角形的性质可得到EG=AG=1,然后在RtGEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在RtABD中,依据锐角三角函数的定义可求得AB的长,从而可求得O的半径的长【详解】(1)AC 是O 的切线,BAAC,CAD+BAD=90°,AB 是O 的直径,ADB=90°,B+BAD=90°,CAD=B,DA=DE,EAD=E,又B=E,B=EAD,EAD=CAD,在ADF和ADC中,ADF=ADC=90°,AD=AD,FAD=CAD,ADFADC,FD=CD(2)如下图所示:过点D作DGAE,垂足为GDE=AE,DGAE,EG=AG=AE=1tanE=,=,即=,解得DG=1ED=2B=E,tanE=,sinB=,即,解得AB=O的半径为【点睛】本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键

    注意事项

    本文(湖北省武汉第三寄宿中学2023年中考五模数学试题含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开