湖南省长沙市浏阳市浏阳河中学2022-2023学年中考数学适应性模拟试题含解析.doc
-
资源ID:88318202
资源大小:851KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖南省长沙市浏阳市浏阳河中学2022-2023学年中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知为单位向量,=,那么下列结论中错误的是( )ABC与方向相同D与方向相反2如图,AB切O于点B,OA2,AB3,弦BCOA,则劣弧BC的弧长为()ABCD3如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“ABC”的过程,形成一组波浪线点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是()A10BCD154下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A2011年我国的核电发电量占总发电量的比值约为1.5%B2006年我国的总发电量约为25000亿千瓦时C2013年我国的核电发电量占总发电量的比值是2006年的2倍D我国的核电发电量从2008年开始突破1000亿千瓦时5下列计算正确的是()A2x2y32x3y4x6y3B(2a2)36a6C(2a+1)(2a1)2a21D35x3y2÷5x2y7xy6下列运算正确的是()Aa3a=2aB(ab2)0=ab2C=D×=97将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+38计算(ab2)3÷(ab)2的结果是()Aab4 Bab4 Cab3 Dab39如图,ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BFDE,与AE的延长线交于点F,若AB=6,则BF的长为()A6B7C8D1010如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )ABCD二、填空题(共7小题,每小题3分,满分21分)11小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_12如图所示,四边形ABCD中,对角线AC、BD交于点E,且,若,则CE的长为_13如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,则第2018个正方形的面积为_14如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_(结果保留)15为了求1+2+22+23+22016+22017的值,可令S1+2+22+23+22016+22017,则2S2+22+23+24+22017+22018,因此2SS220181,所以1+22+23+22017220181请你仿照以上方法计算1+5+52+53+52017的值是_16如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果1=20°,那么2的度数是_.17如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点若AB4,BC3,则AE+EF的长为_三、解答题(共7小题,满分69分)18(10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计)19(5分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F求证:OEOF20(8分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EFAM,垂足为F,交AD的延长线于点E,交DC于点N求证:ABMEFA;若AB=12,BM=5,求DE的长21(10分)如图,在中,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径求证:与相切;当时,求的半径22(10分)如图,在ABC中,已知AB=AC=5,BC=6,且ABCDEF,将DEF与ABC重合在一起,ABC不动,DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点(1)求证:ABEECM;(2)探究:在DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积23(12分)某校为了开阔学生的视野,积极组织学生参加课外读书活动“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?24(14分)如图,以ABC的边AB为直径的O分别交BC、AC于F、G,且G是的中点,过点G作DEBC,垂足为E,交BA的延长线于点D(1)求证:DE是的O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】由向量的方向直接判断即可.【详解】解:为单位向量,=,所以与方向相反,所以C错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.2、A【解析】试题分析:连接OB,OC,AB为圆O的切线,ABO=90°,在RtABO中,OA=,A=30°,OB=,AOB=60°,BCOA,OBC=AOB=60°,又OB=OC,BOC为等边三角形,BOC=60°,则劣弧长为故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算3、C【解析】A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积【详解】A,C之间的距离为6,2017÷6=3361,故点P离x轴的距离与点B离x轴的距离相同,在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,m=6,20202017=3,故点Q与点P的水平距离为3, 解得k=6,双曲线 1+3=4, 即点Q离x轴的距离为, 四边形PDEQ的面积是故选:C【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.4、B【解析】由折线统计图和条形统计图对各选项逐一判断即可得【详解】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为500÷2.0%25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B【点睛】本题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况5、D【解析】A根据同底数幂乘法法则判断;B根据积的乘方法则判断即可;C根据平方差公式计算并判断;D根据同底数幂除法法则判断【详解】A.-2x-2y3×2x3y=-4xy4,故本选项错误;B. (2a2)3=8a6,故本项错误;C. (2a+1)(2a1)=4a21,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.6、D【解析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案【详解】解:A、a3a=2a,故此选项错误;B、(ab2)0=1,故此选项错误;C、故此选项错误;D、×=9,正确故选D【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键7、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键8、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.9、C【解析】 ACB=90°,D为AB的中点,AB=6,CD=AB=1又CE=CD,CE=1,ED=CE+CD=2又BFDE,点D是AB的中点,ED是AFB的中位线,BF=2ED=3故选C10、B【解析】首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,易得ABC是等边三角形,即可得到答案【详解】连接AC,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=BC,ABC是等边三角形,AC=AB=1故选:B【点睛】本题考点:菱形的性质.二、填空题(共7小题,每小题3分,满分21分)11、小李【解析】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李故答案为:小李12、【解析】此题有等腰三角形,所以可作BHCD,交EC于点G,利用三线合一性质及邻补角互补可得BGD=120°,根据四边形内角和360°,得到ABG+ADG=180°此时再延长GB至K,使AK=AG,构造出等边AGK易证ABKADG,从而说明ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在RtDBH中利用勾股定理及三角函数知识得到EBG的正切值,然后作EFBG,求出EF,在RtEFG中解出EG长度,最后CE=CG+GE求解【详解】如图,作于H,交AC于点G,连接DG,BH垂直平分CD,延长GB至K,连接AK使,则是等边三角形,又,(),是等边三角形,设,则,在中,解得,当时,所以,作,设,则,故答案为【点睛】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键13、1【解析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积【详解】:第1个正方形的面积为:1+4××2×1=5=51;第2个正方形的面积为:5+4××2×=25=52;第3个正方形的面积为:25+4××2×=125=53;第n个正方形的面积为:5n;第2018个正方形的面积为:1故答案为1【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积14、cm1【解析】求出AD,先分别求出两个扇形的面积,再求出答案即可【详解】解:AB长为15cm,贴纸部分的宽BD为15cm,AD=10cm,贴纸的面积为S=S扇形ABCS扇形ADE=(cm1),故答案为cm1【点睛】本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键15、【解析】根据上面的方法,可以令S=1+5+52+53+52017,则5S=5+52+53+52012+52018,再相减算出S的值即可.【详解】解:令S1+5+52+53+52017,则5S5+52+53+52012+52018,5SS1+52018,4S520181,则S,故答案为:【点睛】此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S来达到抵消的目的.16、25°【解析】直尺的对边平行,1=20°,3=1=20°,2=45°-3=45°-20°=25°17、1【解析】先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果【详解】解:点E,F分别是的中点,FE是BCD的中位线, .又E是BD的中点,RtABD中,故答案为1【点睛】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半三、解答题(共7小题,满分69分)18、44cm【解析】解:如图,设BM与AD相交于点H,CN与AD相交于点G,由题意得,MH=8cm,BH=40cm,则BM=32cm,四边形ABCD是等腰梯形,AD=50cm,BC=20cm,EFCD,BEMBAH,即,解得:EM=1EF=EMNFBC=2EMBC=44(cm)答:横梁EF应为44cm根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长度,再由BEMBAH,可得出EM,继而得出EF的长度19、见解析【解析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得AEOCFO,由全等三角形的对应边相等,可得OE=OF【详解】证明:四边形ABCD是平行四边形,OA=OC,ABDC,EAO=FCO,在AEO和CFO中,AEOCFO(ASA),OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.20、(1)见解析;(2)4.1【解析】试题分析:(1)由正方形的性质得出AB=AD,B=10°,ADBC,得出AMB=EAF,再由B=AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由ABMEFA得出比例式,求出AE,即可得出DE的长试题解析:(1)四边形ABCD是正方形,AB=AD,B=10°,ADBC,AMB=EAF,又EFAM,AFE=10°,B=AFE,ABMEFA;(2)B=10°,AB=12,BM=5,AM=13,AD=12,F是AM的中点,AF=AM=6.5,ABMEFA,即,AE=16.1,DE=AE-AD=4.1考点:1.相似三角形的判定与性质;2.正方形的性质21、 (1)证明见解析;(2)【解析】(1)连接OM,证明OMBE,再结合等腰三角形的性质说明AEBE,进而证明OMAE;(2)结合已知求出AB,再证明AOMABE,利用相似三角形的性质计算【详解】(1)连接OM,则OM=OB,1=2,BM平分ABC,1=3,2=3,OMBC,AMO=AEB,在ABC中,AB=AC,AE是角平分线,AEBC,AEB=90°,AMO=90°,OMAE,点M在圆O上,AE与O相切;(2)在ABC中,AB=AC,AE是角平分线,BE=BC,ABC=C,BC=4,cosC=BE=2,cosABC=,在ABE中,AEB=90°,AB=6,设O的半径为r,则AO=6-r,OMBC,AOMABE,解得,的半径为【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.22、(1)证明见解析;(2)能;BE=1或;(3)【解析】(1)证明:ABAC,BC,ABCDEF,AEFB,又AEFCEMAECBBAE,CEMBAE,ABEECM;(2)能AEFBC,且AMEC,AMEAEF,AEAM;当AEEM时,则ABEECM,CEAB5,BEBCEC651,当AMEM时,则MAEMEA,MAEBAEMEACEM,即CABCEA,又CC,CAECBA,CE,BE6;BE1或;(3)解:设BEx,又ABEECM,即:,CM,AM5CM,当x3时,AM最短为,又当BEx3BC时,点E为BC的中点,AEBC,AE,此时,EFAC,EM,SAEM23、(4)60;(4)作图见试题解析;(4)4【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数试题解析:(4)被调查的学生人数为:44÷40%=60(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400×=4(人)考点:4条形统计图;4用样本估计总体;4扇形统计图24、(1)证明见解析;(1);(3)1.【解析】(1)要证明DE是的O切线,证明OGDE即可;(1)先证明GBAEBG,即可得出=,根据已知条件即可求出BE;(3)先证明AGBCGB,得出BC=AB=6,BE=4.8再根据OGBE得出=,即可计算出AD.【详解】证明:(1)如图,连接OG,GB,G是弧AF的中点,GBF=GBA,OB=OG,OBG=OGB,GBF=OGB,OGBC,OGD=GEB,DECB,GEB=90°,OGD=90°,即OGDE且G为半径外端,DE为O切线;(1)AB为O直径,AGB=90°,AGB=GEB,且GBA=GBE,GBAEBG,;(3)AD=1,根据SAS可知AGBCGB,则BC=AB=6,BE=4.8,OGBE,即,解得:AD=1【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.