襄樊市重点中学2023年中考数学押题试卷含解析.doc
-
资源ID:88320464
资源大小:691KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
襄樊市重点中学2023年中考数学押题试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1tan45°的值等于()ABCD12如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得CAB25°,延长AC至点M,则BCM的度数为( )A40°B50°C60°D70°3如图所示,ABC为等腰直角三角形,ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()ABCD4为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a2b,2ab,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A3,1B1,3C3,1D1,35如图,ABC是等边三角形,点P是三角形内的任意一点,PDAB,PEBC,PFAC,若ABC的周长为12,则PD+PE+PF()A12B8C4D36下列运算正确的是()Axx4=x5Bx6÷x3=x2C3x2x2=3D(2x2)3=6x67在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A中位数不变,方差不变B中位数变大,方差不变C中位数变小,方差变小D中位数不变,方差变小8反比例函数y=的图象与直线y=x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )At Bt Ct Dt9若是新规定的某种运算符号,设ab=b 2 -a,则-2x=6中x的值()A4B8C2D-210如图,在ABC中,ACB90°,CDAB于点D,则图中相似三角形共有()A1对B2对C3对D4对二、填空题(共7小题,每小题3分,满分21分)11如图,ABC中,A=80°,B=40°,BC的垂直平分线交AB于点D,联结DC如果AD=2,BD=6,那么ADC的周长为 12假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12108合计/kg小菲购买的数量/kg2226小琳购买的数量/kg1236从平均价格看,谁买得比较划算?( )A一样划算 B小菲划算C小琳划算 D无法比较13函数y=的自变量x的取值范围是_14如图,在RtABC中,B=90°,A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则EAD的余弦值是_15如图,在2×4的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,ABC的顶点都在格点上,将ABC绕着点C按顺时针方向旋转一定角度后,得到A'B'C',点A'、B'在格点上,则点A走过的路径长为_(结果保留)16若 m、n 是方程 x2+2018x1=0 的两个根,则 m2n+mn2mn=_17如图,直线经过正方形的顶点分别过此正方形的顶点、作于点、 于点若,则的长为_三、解答题(共7小题,满分69分)18(10分)如图,在菱形ABCD中,作于E,BFCD于F,求证:19(5分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?20(8分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高(=1.73,结果保留一位小数)21(10分)如图,AB是O的直径,CD为弦,且ABCD于E,点M为上一动点(不包括A,B两点),射线AM与射线EC交于点F(1)如图,当F在EC的延长线上时,求证:AMDFMC(2)已知,BE2,CD1求O的半径;若CMF为等腰三角形,求AM的长(结果保留根号)22(10分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?23(12分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?24(14分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生20162017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图请根据图中提供的信息,回答下列问题:(1)a= %,并补全条形图(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据特殊角三角函数值,可得答案【详解】解:tan45°=1,故选D【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键2、B【解析】解:由作法可知直线l是线段AB的垂直平分线,AC=BC,CAB=CBA=25°,BCM=CAB+CBA=25°+25°=50°故选B3、A【解析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可【详解】解:设CD的长为与正方形DEFG重合部分图中阴影部分的面积为当C从D点运动到E点时,即时,当A从D点运动到E点时,即时,与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应故选A【点睛】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围4、A【解析】根据题意可得方程组,再解方程组即可【详解】由题意得:,解得:,故选A5、C【解析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可【详解】延长EP、FP分别交AB、BC于G、H,则由PDAB,PEBC,PFAC,可得,四边形PGBD,EPHC是平行四边形,PG=BD,PE=HC,又ABC是等边三角形,又有PFAC,PDAB可得PFG,PDH是等边三角形,PF=PG=BD,PD=DH,又ABC的周长为12,PD+PE+PF=DH+HC+BD=BC=×12=4,故选C【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°6、A【解析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、xx4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误故选A7、D【解析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断【详解】原数据的中位数是=3,平均数为=3,方差为×(1-3)2+(2-3)2+(4-3)2+(5-3)2=;新数据的中位数为3,平均数为=3,方差为×(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2;所以新数据与原数据相比中位数不变,方差变小,故选:D【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义8、B【解析】将一次函数解析式代入到反比例函数解析式中,整理得出x22x+16t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解【详解】由题意可得:x+2=,所以x22x+16t=0,两函数图象有两个交点,且两交点横坐标的积为负数, 解不等式组,得t故选:B点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.9、C【解析】解:由题意得:,x=±1故选C10、C【解析】ACB=90°,CDAB,ABCACD,ACDCBD,ABCCBD,所以有三对相似三角形故选C二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】试题分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得BCD的度数,继而求得ADC的度数,则可判定ACD是等腰三角形,继而求得答案试题解析:BC的垂直平分线交AB于点D,CD=BD=6,DCB=B=40°,ADC=B+BCD=80°,ADC=A=80°,AC=CD=6,ADC的周长为:AD+DC+AC=2+6+6=1考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质12、C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷613,则小琳划算考点:平均数的计算13、x且x1【解析】分析:根据被开方数大于等于0,分母不等于0列式求解即可详解:根据题意得2x+10,x-10,解得x-且x1故答案为x-且x1点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单14、【解析】利用特殊三角形的三边关系,求出AM,AE长,求比值.【详解】解:如图所示,设BC=x,在RtABC中,B=90°,A=30°,AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,如图,作EMAD于M,则AM=AD=x,在RtAEM中,cosEAD=,故答案为:.【点睛】特殊三角形: 30°-60°-90°特殊三角形,三边比例是1:2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.15、【解析】分析:连接AA,根据勾股定理求出AC=AC,及AA的长,然后根据勾股定理的逆定理得出ACA为等腰直角三角形,然后根据弧长公式求解即可.详解:连接AA,如图所示AC=AC=,AA=,AC2+AC2=AA2,ACA为等腰直角三角形,ACA=90°,点A走过的路径长=×2AC=故答案为: 点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等解决问题的关键是找出变换的规律,根据弧长公式求解16、1【解析】根据根与系数的关系得到 m+n=2018,mn=1,把 m2n+mm2mn分解因式得到 mn(m+n1),然后利用整体代入的方法计算【详解】解:m、n 是方程 x2+2018x1=0 的两个根, 则原式=mn(m+n1)=1×(20181)=1×(1)=1,故答案为:1【点睛】本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关 系的合理应用17、13【解析】根据正方形的性质得出AD=AB,BAD=90°,根据垂直得出DEA=AFB=90°,求出EDA=FAB,根据AAS推出AEDBFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;【详解】ABCD是正方形(已知),AB=AD,ABC=BAD=90°;又FAB+FBA=FAB+EAD=90°,FBA=EAD(等量代换);BFa于点F,DEa于点E,在RtAFB和RtAED中,AFBAED(AAS),AF=DE=8,BF=AE=5(全等三角形的对应边相等),EF=AF+AE=DE+BF=8+5=13.故答案为13.点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出AEDBFA是解此题的关键三、解答题(共7小题,满分69分)18、见解析【解析】由菱形的性质可得,然后根据角角边判定,进而得到.【详解】证明:菱形ABCD,在与中,【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.19、 (1)4元/瓶(2) 销售单价至少为1元/瓶【解析】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由数量总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润销售单价×销售数量进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论【详解】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,依题意,得:3×,解得:x4,经检验,x4是原方程的解,且符合题意答:第一批饮料进货单价是4元/瓶;(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶设销售单价为y元/瓶,依题意,得:(450+1350)y180081002100,解得:y1答:销售单价至少为1元/瓶【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式20、塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形本题涉及两个直角三角形,即RtBED和RtDAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC试题解析:作BECD于E可得RtBED和矩形ACEB则有CE=AB=16,AC=BE在RtBED中,DBE=45°,DE=BE=AC在RtDAC中,DAC=60°,DC=ACtan60°=AC16+DE=DC,16+AC=AC,解得:AC=8+8=DE所以塔CD的高度为(8+24)米37.9米,答:塔CD的高度为37.9米21、(1)详见解析;(2)2;1或【解析】(1)想办法证明AMDADC,FMCADC即可解决问题;(2)在RtOCE中,利用勾股定理构建方程即可解决问题;分两种情形讨论求解即可.【详解】解:(1)证明:如图中,连接AC、ADABCD,CEED,ACAD,ACDADC,AMDACD,AMDADC,FMC+AMC110°,AMC+ADC110°,FMCADC,FMCADC,FMCAMD(2)解:如图1中,连接OC设O的半径为r在RtOCE中,OC2OE2+EC2,r2(r2)2+42,r2FMCACDF,只有两种情形:MFFC,FMMC如图中,当FMFC时,易证明CMAD,AMCD1如图中,当MCMF时,连接MO,延长MO交AD于HMFCMCFMAD,FMCAMD,ADMMAD,MAMD,MHAD,AHDH,在RtAED中,AD,AH,tanDAE,OH,MH2+,在RtAMH中,AM【点睛】本题考查了圆的综合题:熟练掌握与圆有关的性质、圆的内接正方形的性质和旋转的性质;灵活利用全等三角形的性质;会利用面积的和差计算不规则几何图形的面积22、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解析】(1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案【详解】(1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元得 解得:,答:A、B两种品牌得化妆品每套进价分别为100元,75元(2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50m)套根据题意得:100m+75(50m)4000,且50m0,解得,5m10,利润是30m+20(50m)=1000+10m,当m取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解23、(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人【解析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查(2)最喜欢足球活动的有10人,最喜欢足球活动的人占被调查人数的20% (3)全校学生人数:400÷(130%24%26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×=720(人)【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.24、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人【解析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案【详解】解:(1)扇形统计图中a=15%40%20%25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小