贵州省绥阳县2023年中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )ABCD2不等式2x11的解集在数轴上表示正确的是()ABCD3下列计算正确的是()A2a2a21B(ab)2ab2Ca2+a3a5D(a2)3a64在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,如此继续运动下去,设Pn(xn,yn),n1,2,3,则x1+x2+x2018+x2019的值为()A1B3C1D20195如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D116如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()ABCD7在0,2,3,四个数中,最小的数是()A0B2C3D8如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )ABCD9化简:(a+)(1)的结果等于()Aa2Ba+2CD10若数a使关于x的不等式组有解且所有解都是2x+60的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A5B4C3D2二、填空题(本大题共6个小题,每小题3分,共18分)11的相反数是_12图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则1+2+3+4+5= 度13如图,在ABC中,CA=CB,ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为_14已知关于x的一元二次方程有两个相等的实数根,则a的值是_15如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是_16如图所示,在四边形ABCD中,ADAB,C=110°,它的一个外角ADE=60°,则B的大小是_三、解答题(共8题,共72分)17(8分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3)(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由18(8分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书)请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量19(8分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.求的进价分别是每个多少元?该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?20(8分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图(2)所抽取的学生参加其中一项活动的众数是 (3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?21(8分)如图,已知AB是O的直径,CD与O相切于C,BECO(1)求证:BC是ABE的平分线;(2)若DC=8,O的半径OA=6,求CE的长22(10分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图和图请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为 ,图中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数23(12分)已知抛物线y=ax2+bx+c()若抛物线的顶点为A(2,4),抛物线经过点B(4,0)求该抛物线的解析式;连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6S6+8时,求x的取值范围;()若a0,c1,当x=c时,y=0,当0xc时,y0,试比较ac与l的大小,并说明理由24某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客 万人,扇形统计图中E景点所对应的圆心角的度数是 ,并补全条形统计图(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是 参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.2、D【解析】先求出不等式的解集,再在数轴上表示出来即可【详解】移项得,2x1+1,合并同类项得,2x2,x的系数化为1得,x1在数轴上表示为:故选D【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键3、D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2a2a2,故A错误;B、(ab)2a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3a6,故D正确,故选D【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键4、C【解析】根据各点横坐标数据得出规律,进而得出x +x +x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,1,1,3,3,3,3,5;x1+x2+x71x1+x2+x3+x4111+32;x5+x6+x7+x8333+52;x97+x98+x99+x1002x1+x2+x20162×(2016÷4)1而x2017、x2018、x2019的值分别为:1009、1009、1009,x2017+x2018+x20191009,x1+x2+x2018+x2019110091,故选C【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律5、A【解析】分析:根据多边形的内角和公式及外角的特征计算详解:多边形的外角和是360°,根据题意得:110°(n-2)=3×360°解得n=1故选A点睛:本题主要考查了多边形内角和公式及外角的特征求多边形的边数,可以转化为方程的问题来解决6、A【解析】根据题意找到等量关系:矩形面积+三角形面积阴影面积30;(矩形面积阴影面积)(三角形面积阴影面积)4,据此列出方程组【详解】依题意得:故选A【点睛】考查了由实际问题抽象出二元一次方程组根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组7、B【解析】根据实数比较大小的法则进行比较即可【详解】在这四个数中30,0,-20,-2最小故选B【点睛】本题考查的是实数的大小比较,即正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小8、B【解析】试题解析:转盘被等分成6个扇形区域,而黄色区域占其中的一个,指针指向黄色区域的概率=故选A考点:几何概率9、B【解析】解:原式=故选B考点:分式的混合运算10、D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可【详解】不等式组整理得:,由不等式组有解且都是2x+60,即x-3的解,得到-3a-13,即-2a4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据只有符号不同的两个数叫做互为相反数解答【详解】的相反数是.故答案为.【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.12、360°【解析】根据多边形的外角和等于360°解答即可【详解】由多边形的外角和等于360°可知,1+2+3+4+5=360°,故答案为360°【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键13、【解析】连接CD,根据题意可得DCEBDF,阴影部分的面积等于扇形的面积减去BCD的面积【详解】解:连接CD,作DMBC,DNACCA=CB,ACB=90°,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:CA=CB,ACB=90°,点D为AB的中点,CD平分BCA,又DMBC,DNAC,DM=DN,GDH=MDN=90°,GDM=HDN,则在DMG和DNH中, ,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=则阴影部分的面积是: 故答案为:【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键14、.【解析】试题分析:关于x的一元二次方程有两个相等的实数根,.考点:一元二次方程根的判别式.15、【解析】分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率详解:英文单词probability中,一共有11个字母,其中字母b有2个,任取一张,那么取到字母b的概率为 故答案为点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比16、40°【解析】【分析】根据外角的概念求出ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】ADE=60°,ADC=120°,ADAB,DAB=90°,B=360°CADCA=40°,故答案为40°【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键三、解答题(共8题,共72分)17、 (1) y=x2+2x+3;(2)见解析.【解析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),得,该抛物线的解析式为y=x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:抛物线y=x2+2x+3=(x1)2+4,点B(3,0),点C(0,3),抛物线的对称轴为直线x=1,点A的坐标为(1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3t)2=t26t+10,当AC为斜边时,10=4+t2+t26t+10,解得,t1=1或t2=2,点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t26t+10,解得,t=,点Q的坐标为(1,),当CQ时斜边时,t26t+10=4+t2+10,解得,t=,点Q的坐标为(1,),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,)时,使得以A、C、Q为顶点的三角形为直角三角形【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.18、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书【解析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可【详解】(1)捐 2 本的人数是 15 人,占 30%,该班学生人数为 15÷30%50 人;(2)根据条形统计图可得:捐 4 本的人数为:50(10+15+7+5)13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为 360°×36°(4)九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50,全校 2000 名学生共捐 2000×6280(本),答:全校 2000 名学生共捐 6280 册书【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数19、(1)的进价是元,的进价是元;(2)至少购进类玩具个.【解析】(1)设的进价为元,则的进价为元,根据用元购进类玩具的数量与用元购进类玩具的数量相同这个等量关系列出方程即可;(2)设玩具个,则玩具个,结合“玩具点将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得利润不少于元”列出不等式并解答.【详解】解:(1)设的进价为元,则的进价为元由题意得,解得,经检验是原方程的解.所以(元)答:的进价是元,的进价是元;(2)设玩具个,则玩具个由题意得:解得.答:至少购进类玩具个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.20、(1)见解析(2)A-国学诵读(3)360人【解析】(1)根据统计图中C的人数和所占百分比可求出被调查的总人数,进而求出活动B和D人数,故可补全条形统计图;(2)由条形统计图知众数为“A-国学诵读”(3)先求出参加活动A的占比,再乘以全校人数即可.【详解】(1)由题意可得,被调查的总人数为12÷20%=60,希望参加活动B的人数为60×15%=9,希望参加活动D的人数为60-27-9-12=12,故补全条形统计图如下:(2)由条形统计图知众数为“A-国学诵读”;(3)由题意得全校学生希望参加活动A的人数为800×=360(人)【点睛】此题主要考查统计图的应用,解题的关键是根据题意求出调查的总人数再进行求解.21、(1)证明见解析;(2)4.1【解析】试题分析:(1)由BECO,推出OCB=CBE,由OC=OB,推出OCB=OBC,可得CBE=CBO;(2)在RtCDO中,求出OD,由OCBE,可得,由此即可解决问题;试题解析:(1)证明:DE是切线,OCDE,BECO,OCB=CBE,OC=OB,OCB=OBC,CBE=CBO,BC平分ABE(2)在RtCDO中,DC=1,OC=0A=6,OD=10,OCBE,EC=4.1考点:切线的性质22、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1(2)观察条形统计图,这组数据的平均数为15;在这组数据中,16出现了12次,出现的次数最多,这组数据的众数为16;将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键23、()y=x2+3x当3+6S6+2时,x的取值范围为是x或x()ac1【解析】(I)由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,当点P在第四象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0xc时y0,可得出抛物线的对称轴x=c,进而可得出b-2ac,结合b=-ac-1即可得出ac1【详解】(I)设抛物线的解析式为y=a(x+2)23,抛物线经过点B(3,0),0=a(3+2)23,解得:a=1,该抛物线的解析式为y=(x+2)23=x2+3x设直线AB的解析式为y=kx+m(k0),将A(2,3)、B(3,0)代入y=kx+m,得:,解得:,直线AB的解析式为y=2x2直线l与AB平行,且过原点,直线l的解析式为y=2x当点P在第二象限时,x0,如图所示SPOB=×3×(2x)=3x,SAOB=×3×3=2,S=SPOB+SAOB=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围是x当点P在第四象限时,x0,过点A作AEx轴,垂足为点E,过点P作PFx轴,垂足为点F,则S四边形AEOP=S梯形AEFPSOFP=(x+2)x(2x)=3x+3SABE=×2×3=3,S=S四边形AEOP+SABE=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围为x综上所述:当3+6S6+2时,x的取值范围为是x或x(II)ac1,理由如下:当x=c时,y=0,ac2+bc+c=0,c1,ac+b+1=0,b=ac1由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0)把x=0代入y=ax2+bx+c,得y=c,抛物线与y轴的交点为(0,c)a0,抛物线开口向上当0xc时,y0,抛物线的对称轴x=c,b2acb=ac1,ac12ac,ac1【点睛】本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)巧设顶点式,代入点B的坐标求出a值,分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b-2ac24、(1)50,43.2°,补图见解析;(2)【解析】(1)由A景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率【详解】解:(1)该市景点共接待游客数为:15÷30%=50(万人),E景点所对应的圆心角的度数是: B景点人数为:50×24%=12(万人),补全条形统计图如下:故答案是:50,43.2o.(2)画树状图可得:共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,同时选择去同一个景点的概率=.