辽宁省盖州市东城中学2023年中考一模数学试题含解析.doc
-
资源ID:88321031
资源大小:847KB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
辽宁省盖州市东城中学2023年中考一模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在平面直角坐标系中,把ABC绕原点O旋转180°得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(5,2),则点D的坐标为()A(2,2)B(2,2)C(2,5)D(2,5)2如图,一次函数y1xb与一次函数y2kx4的图象交于点P(1,3),则关于x的不等式xbkx4的解集是()Ax2Bx0Cx1Dx13计算3×(5)的结果等于()A15 B8 C8 D154已知直线与直线的交点在第一象限,则的取值范围是( )ABCD5据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为()A14.4×103B144×102C1.44×104D1.44×1046根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8×107B880×108C8.8×109D8.8×10107下列几何体中,主视图和俯视图都为矩形的是( )ABCD8如图,在ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E若BF=8,AB=5,则AE的长为( )A5B6C8D129魏晋时期的数学家刘徽首创割圆术为计算圆周率建立了严密的理论和完善的算法作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A0.5B1C3D10上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是() 12345成绩(m)8.28.08.27.57.8A8.2,8.2B8.0,8.2C8.2,7.8D8.2,8.011已知二次函数y=ax2+bx+c(a1)的图象如图所示,则下列结论:a、b同号;当x=1和x=3时,函数值相等;4a+b=1;当y=2时,x的值只能取1;当1x5时,y1其中,正确的有()A2个B3个C4个D5个12如图,由四个正方体组成的几何体的左视图是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若式子有意义,则x的取值范围是_14若分式的值为0,则a的值是 15如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,An,分别过这些点做x轴的垂线与反比例函数y的图象相交于点P1,P2,P3,P4,Pn,再分别过P2,P3,P4,Pn作P2B1A1P1,P3B2A2P2,P4B3A3P3,PnBn1An1Pn1,垂足分别为B1,B2,B3,B4,Bn1,连接P1P2,P2P3,P3P4,Pn1Pn,得到一组RtP1B1P2,RtP2B2P3,RtP3B3P4,RtPn1Bn1Pn,则RtPn1Bn1Pn的面积为_16一元二次方程x1x21的根是_17已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 18已知点P(1,2)关于x轴的对称点为P,且P在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系xOy中,ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)按下列要求作图:将ABC向左平移4个单位,得到A1B1C1;将A1B1C1绕点B1逆时针旋转90°,得到A1B1C1求点C1在旋转过程中所经过的路径长20(6分)如图,将连续的奇数1,3,5,7按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示(1)计算:若十字框的中间数为17,则a+b+c+d=_(2)发现:移动十字框,比较a+b+c+d与中间的数猜想:十字框中a、b、c、d的和是中间的数的_;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由21(6分)如图,O的直径AD长为6,AB是弦,CDAB,A=30°,且CD=(1)求C的度数;(2)求证:BC是O的切线22(8分)某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图请结合统计图,回答下列问题:(1)这次调查中,一共调查了多少名学生?(2)求出扇形统计图中“B:跳绳”所对扇形的圆心角的度数,并补全条形图;(3)若该校有2000名学生,请估计选择“A:跑步”的学生约有多少人?23(8分)如图,已知ABCD作B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若ABCD的周长为10,CD=2,求DE的长。24(10分)(1)化简:(2)解不等式组25(10分)综合与探究如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD设点M运动的时间为t(t0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由26(12分)在平面直角坐标系xOy中,将抛物线(m0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点(1)直接写出点A的坐标;(2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点当BAC90°时求抛物线G2的表达式;若60°BAC120°,直接写出m的取值范围27(12分)(1)如图1,在矩形ABCD中,点O在边AB上,AOC=BOD,求证:AO=OB;(2)如图2,AB是O的直径,PA与O相切于点A,OP与O相交于点C,连接CB,OPA=40°,求ABC的度数参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:点A,C的坐标分别为(5,2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标2、C【解析】试题分析:当x1时,x+bkx+4,即不等式x+bkx+4的解集为x1故选C考点:一次函数与一元一次不等式3、A【解析】按照有理数的运算规则计算即可.【详解】原式=-3×5=-15,故选择A.【点睛】本题考查了有理数的运算,注意符号不要搞错.4、C【解析】根据题意画出图形,利用数形结合,即可得出答案【详解】根据题意,画出图形,如图:当时,两条直线无交点;当时,两条直线的交点在第一象限故选:C【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键5、C【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【详解】14400=1.44×1故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、D【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】880亿=880 0000 0000=8.8×1010,故选D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、B【解析】A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图,俯视图均为圆,故C选项错误;D、主视图为矩形,俯视图为三角形,故D选项错误.故选:B.8、B【解析】试题分析:由基本作图得到AB=AF,AG平分BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AEBF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1故选B考点:1、作图基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质9、C【解析】连接OC、OD,根据正六边形的性质得到COD60°,得到COD是等边三角形,得到OCCD,根据题意计算即可【详解】连接OC、OD,六边形ABCDEF是正六边形,COD60°,又OCOD,COD是等边三角形,OCCD,正六边形的周长:圆的直径6CD:2CD3,故选:C【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键10、D【解析】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1其中8.1出现1次,出现次数最多,8.2排在第三,这组数据的众数与中位数分别是:8.1,8.2故选D【点睛】本题考查众数;中位数11、A【解析】根据二次函数的性质和图象可以判断题目中各个小题是否成立【详解】由函数图象可得,a1,b1,即a、b异号,故错误,x=-1和x=5时,函数值相等,故错误,-2,得4a+b=1,故正确,由图象可得,当y=-2时,x=1或x=4,故错误,由图象可得,当-1x5时,y1,故正确,故选A【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答12、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.二、填空题:(本大题共6个小题,每小题4分,共24分)13、x【解析】解:依题意得:2x+31解得x故答案为x14、1【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可试题解析:分式的值为0,解得a=1考点:分式的值为零的条件15、【解析】解:设OA1A1A2A2A3An2An1An1Ana,当xa时,P1的坐标为(a,),当x2a时,P2的坐标为(2a,),RtP1B1P2的面积为,RtP2B2P3的面积为,RtP3B3P4的面积为,RtPn1Bn1Pn的面积为故答案为:16、x0或x1【解析】利用因式分解法求解可得【详解】(x1)(x+1)(x1)=0,(x1)(1x1)=0,即x(x1)=0,则x=0或x=1,故答案为:x=0或x=1【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键17、1【解析】试题分析:因为2+24,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1考点:等腰三角形的性质;三角形三边关系18、y=1x+1【解析】由对称得到P(1,2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】点P(1,2)关于x轴的对称点为P,P(1,2),P在直线y=kx+3上,2=k+3,解得:k=1,则y=1x+3,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=1x+1故答案为y=1x+1考点:一次函数图象与几何变换三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;见解析;(1)1【解析】(1)利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得A1B1C1;利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算【详解】(1)如图,A1B1C1为所作;如图,A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形也考查了平移的性质20、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.【解析】(1)直接相加即得到答案; (2)根据(1)猜想a+b+c+d=4x; (3)用x表示a、b、c、d,相加后即等于4x; (4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1【详解】(1)5+15+19+29=68,故答案为68;(2)根据(1)猜想a+b+c+d=4x,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,a+b+c+d=x-12+x-2+x+2+x+12=4x,猜想正确;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,M的值不能等于1【点睛】本题考查了一元一次方程的应用当解得方程的解后,要观察是否满足题目和实际要求再进行取舍21、(1)60°;(2)见解析【解析】(1)连接BD,由AD为圆的直径,得到ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出C的度数;(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出ABC度数,由ABCABO度数确定出OBC度数为90,即可得证;【详解】(1)如图,连接BD,AD为圆O的直径,ABD=90°,BD=AD=3,CDAB,ABD=90°,CDB=ABD=90°,在RtCDB中,tanC=,C=60°;(2)连接OB,A=30°,OA=OB,OBA=A=30°,CDAB,C=60°,ABC=180°C=120°,OBC=ABCABO=120°30°=90°,OBBC,BC为圆O的切线【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键22、 (1)一共调查了300名学生;(2) 36°,补图见解析;(3)估计选择“A:跑步”的学生约有800人.【解析】(1)由跑步的学生数除以占的百分比求出调查学生总数即可;(2)求出跳绳学生占的百分比,乘以360°求出占的圆心角度数,补全条形统计图即可;(3)利用跑步占的百分比,乘以2000即可得到结果【详解】(1)根据题意得:120÷40%=300(名),则一共调查了300名学生;(2)根据题意得:跳绳学生数为300(120+60+90)=30(名),则扇形统计图中“B:跳绳”所对扇形的圆心角的度数为360°×=36°,;(3)根据题意得:2000×40%=800(人),则估计选择“A:跑步”的学生约有800人【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键23、(1)作图见解析;(2)1【解析】(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得AEB=EBC,利用角平分线即得ABE=EBC,即证 AEB=ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.【详解】(1)解:如图所示:(2)解:平行四边形ABCD的周长为10AB+AD=5AD/BCAEB=EBC又BE平分ABCABE=EBCAEB=ABEAB=AE=2ED=AD-AE=3-2=1【点睛】此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则24、(1);(2)2x<1【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可【详解】(1)原式;(2)不等式组整理得:, 则不等式组的解集为2x<1【点睛】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.25、(1)A(3,0),y=x+;(2)D(t3+,t3),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0t3时,当点M在OB上运动时,即3t4时,进行讨论可求P点坐标【详解】(1)当y=0时,=0,解得x1=1,x2=3,点A在点B的左侧,A(3,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk,故直线l的表达式为y=x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3t,MCMD,过点D作x轴的垂线垂足为N,DMN+CMO=90°,CMO+MCO=90°,MCO=DMN,在MCO与DMN中,MCODMN,MN=OC=,DN=OM=3t,D(t3+,t3);同理,当点M在OB上运动时,如图,OM=t3,MCODMN,MN=OC=,ON=t3+,DN=OM=t3,D(t3+,t3)综上得,D(t3+,t3)将D点坐标代入直线解析式得t=62,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,M在AB上运动,当CMAB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0t3时,tanCBO=,CBO=60°,BDP是等边三角形,DBP=BDP=60°,BD=BP,NBD=60°,DN=3t,AN=t+,NB=4t,tanNBO=,=,解得t=3,经检验t=3是此方程的解,过点P作x轴的垂线交于点Q,易知PQBDNB,BQ=BN=4t=1,PQ=,OQ=2,P(2,);同理,当点M在OB上运动时,即3t4时,BDP是等边三角形,DBP=BDP=60°,BD=BP,NBD=60°,DN=t3,NB=t3+1=t4+,tanNBD=, =,解得t=3,经检验t=3是此方程的解,t=3(不符合题意,舍)故P(2,)【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度26、(1)(,2);(2)y(x)22;【解析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;分别求出当BAC=60°时,当BAC=120°时m的值,即可得出m的取值范围【详解】(1)将抛物线G1:ymx22(m0)向右平移个单位长度后得到抛物线G2,抛物线G2:ym(x)22,点A是抛物线G2的顶点.点A的坐标为(,2)(2)设抛物线对称轴与直线l交于点D,如图1所示点A是抛物线顶点,ABACBAC90°,ABC为等腰直角三角形,CDAD,点C的坐标为(2,)点C在抛物线G2上,m(2)22,解得:依照题意画出图形,如图2所示同理:当BAC60°时,点C的坐标为(1,);当BAC120°时,点C的坐标为(3,)60°BAC120°,点(1,)在抛物线G2下方,点(3,)在抛物线G2上方,解得:【点睛】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.27、(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得AOD=BOC,根据矩形的对边相等,每个角都是直角,可知A=B=90°,AD=BC,根据三角形全等的判定AAS证得AODBOC,从而得证结论(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角POA的度数,然后利用圆周角定理来求ABC的度数试题解析:(1)AOC=BOD AOC -COD=BOD-COD即AOD=BOC 四边形ABCD是矩形A=B=90°,AD=BC AO=OB (2)解:AB是的直径,PA与相切于点A,PAAB,A=90°. 又OPA=40°,AOP=50°,OB=OC,B=OCB. 又AOP=B+OCB,.