重庆市江津区支坪中学2023年中考猜题数学试卷含解析.doc
-
资源ID:88321903
资源大小:607KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
重庆市江津区支坪中学2023年中考猜题数学试卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1图中三视图对应的正三棱柱是()ABCD2若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B14C15D253某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x3时,y18,那么当半径为6cm时,成本为()A18元B36元C54元D72元4如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为()A12cmB12cmC24cmD24cm5如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若1=20°,则B的度数是( ) A70°B65°C60°D55°6已知是二元一次方程组的解,则m+3n的值是( )A4B6C7D87定义运算:ab=2ab若a,b是方程x2+x-m=0(m0)的两个根,则(a+1)a -(b+1)b的值为( )A0 B2 C4m D-4m8如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )ABCD9一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是()ABCD10已知关于x,y的二元一次方程组的解为,则a2b的值是()A2B2C3D3二、填空题(本大题共6个小题,每小题3分,共18分)11若式子有意义,则x的取值范围是_12王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_米13在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_14已知:,则的值是_15如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,则的值为_16在直角坐标系中,坐标轴上到点P(3,4)的距离等于5的点的坐标是三、解答题(共8题,共72分)17(8分)我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定18(8分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动a= ,b= ,点B的坐标为 ;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间19(8分)如图,已知A(4,n),B(2,4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及AOB的面积;(3)求方程的解集(请直接写出答案)20(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQBE于点Q,DPAQ于点P求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长21(8分)已知关于x的一元二次方程为常数求证:不论m为何值,该方程总有两个不相等的实数根;若该方程一个根为5,求m的值22(10分)观察下列各式:由此归纳出一般规律_.23(12分)已知:如图,ABC,射线BC上一点D,求作:等腰PBD,使线段BD为等腰PBD的底边,点P在ABC内部,且点P到ABC两边的距离相等24我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。(1)选中的男主持人为甲班的频率是 (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确故选A【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键2、C【解析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】三角形的两边长分别为5和7,2<第三条边<12,5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.3、D【解析】设y与x之间的函数关系式为ykx2,由待定系数法就可以求出解析式,再求出x6时y的值即可得【详解】解:根据题意设ykx2,当x3时,y18,18k9,则k,ykx2x22x2,当x6时,y2×3672,故选:D【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键4、D【解析】过A作ADBF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.【详解】如图,过A作ADBF于D,ABD=45°,AD=12,=12,又RtABC中,C=30°,AC=2AB=24,故选:D【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.5、B【解析】根据图形旋转的性质得AC=AC,ACA=90°,B=ABC,从而得AAC=45°,结合1=20°,即可求解【详解】将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,AC=AC,ACA=90°,B=ABC,AAC=45°,1=20°,BAC=45°-20°=25°,ABC=90°-25°=65°,B=65°故选B【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键6、D【解析】分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.详解:根据题意,将代入,得:,+,得:m+3n=8,故选D点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.7、A【解析】【分析】由根与系数的关系可得a+b=-1然后根据所给的新定义运算ab=2ab对式子(a+1)a -(b+1)b用新定义运算展开整理后代入进行求解即可.【详解】a,b是方程x2+x-m=0(m0)的两个根,a+b=-1,定义运算:ab=2ab,(a+1)a -(b+1)b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故选A.【点睛】本题考查了一元二次方程根与系数的关系,新定义运算等,理解并能运用新定义运算是解题的关键.8、B【解析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键9、A【解析】一一对应即可.【详解】最左边有一个,中间有两个,最右边有三个,所以选A.【点睛】理解立体几何的概念是解题的关键.10、B【解析】把代入方程组得:,解得:,所以a2b=2×()=2.故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、x2且x1【解析】由知,又在分母上,故答案为且.12、100【解析】先在直角ABE中利用三角函数求出BE和AE,然后在直角ACF中,利用勾股定理求出AC解:如图,作AEBC于点EEAB=30°,AB=100,BE=50,AE=50BC=200,CE=1在RtACE中,根据勾股定理得:AC=100即此时王英同学离A地的距离是100米故答案为100解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线13、(-1, -6)【解析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案【详解】点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,A1(-1,-2),将点A1向下平移4个单位,得到点A2,点A2的坐标是:(-1,-6)故答案为:(-1, -6)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数14、 【解析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由,可设a=2k,b=3k,(k0),故:,故答案:.【点睛】此题主要考查比例的性质,a、b都用k表示是解题的关键.15、【解析】过点B作BFOC于点F,易证SOAE=S四边形DEBF=,SOAB=S四边形DABF,因为,所以,又因为ADBF,所以SBCFSACD,可得BF:AD=2:5,因为SOAD=SOBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:SOEDSOBF,SOED:SOBF=4:25,SOED:S四边形EDFB=4:21,所以SOED= ,SOBF= SOED+ S四边形EDFB=+=, 即可得解:k=2 SOBF=.【详解】解:过点B作BFOC于点F,由反比例函数的比例系数|k|的意义可知:SOAD=SOBF,SOAD- SOED =SOBF一SOED,即SOAE=S四边形DEBF=,SOA B=S四边形DABF,ADBFSBCFSACD,又,BF:AD=2:5,SOAD=SOBF,×OD×AD =×OF×BFBF:AD=2:5= OD:OF易证:SOEDSOBF,SOED:SOBF=4:25,SOED:S四边形EDFB=4:21S四边形EDFB=,SOED= ,SOBF= SOED+ S四边形EDFB=+=, k=2 SOBF=.故答案为.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.16、(0,0)或(0,8)或(6,0)【解析】由P(3,4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个【详解】解:P(3,4)到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,8)或(6,0)故答案是:(0,0)或(0,8)或(6,0)三、解答题(共8题,共72分)17、(1)平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些两个队的平均数都相同,初中部的中位数高,在平均数相同的情况下中位数高的初中部成绩好些(3),因此,初中代表队选手成绩较为稳定(1)根据成绩表加以计算可补全统计表根据平均数、众数、中位数的统计意义回答(2)根据平均数和中位数的统计意义分析得出即可(3)分别求出初中、高中部的方差比较即可18、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒【解析】试题分析:(1)根据可以求得的值,根据长方形的性质,可以求得点的坐标;(2)根据题意点从原点出发,以每秒2个单位长度的速度沿着的线路移动,可以得到当点移动4秒时,点的位置和点的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点移动的时间即可试题解析:(1)a、b满足a4=0,b6=0,解得a=4,b=6,点B的坐标是(4,6),故答案是:4,6,(4,6);(2)点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动,2×4=8,OA=4,OC=6,当点P移动4秒时,在线段CB上,离点C的距离是:86=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.19、(1)y=,y=x2(2)3(3)4x0或x2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集试题解析:(1)B(2,4)在y=上,m=1反比例函数的解析式为y=点A(4,n)在y=上,n=2A(4,2)y=kx+b经过A(4,2),B(2,4),解之得一次函数的解析式为y=x2(2)C是直线AB与x轴的交点,当y=0时,x=2点C(2,0)OC=2SAOB=SACO+SBCO=×2×2+×2×4=3(3)不等式的解集为:4x0或x220、(1)证明见解析;(2)AQAP=PQ,AQBQ=PQ,DPAP=PQ,DPBQ=PQ.【解析】试题分析:(1)利用AAS证明AQBDPA,可得AP=BQ;(2)根据AQAP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,BAD=90°,BAQ+DAP=90°,DPAQ,ADP+DAP=90°,BAQ=ADP,AQBE于点Q,DPAQ于点P,AQB=DPA=90°,AQBDPA(AAS),AP=BQ.(2)AQAP=PQ,AQBQ=PQ,DPAP=PQ,DPBQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.21、(1)详见解析;(2)的值为3或1【解析】(1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.【详解】证明:原方程可化为,不论m为何值,该方程总有两个不相等的实数根解:将代入原方程,得:,解得:,的值为3或1【点睛】本题考查了参数对一元二次方程根的影响.中等难度关键是将根据不同情况讨论参数的取值范围.22、xn+1-1【解析】试题分析:观察其右边的结果:第一个是1;第二个是1;依此类推,则第n个的结果即可求得试题解析:(x1)(+x+1)=故答案为.考点:平方差公式23、见解析.【解析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题【详解】点P在ABC的平分线上,点P到ABC两边的距离相等(角平分线上的点到角的两边距离相等),点P在线段BD的垂直平分线上,PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.24、 (1) (2) ,图形见解析.【解析】(1)根据概率的定义即可求出;(2)先根据题意列出树状图,再利用概率公式进行求解.【详解】(1)由题意P(选中的男主持人为甲班)=(2)列出树状图如下P(选中的男女主持人均为甲班的)=【点睛】此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.