长竹园一中学2023届中考一模数学试题含解析.doc
-
资源ID:88321977
资源大小:933KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
长竹园一中学2023届中考一模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列计算正确的是( )Ax2+x2=x4 Bx8÷x2=x4 Cx2x3=x6 D(-x)2-x2=02实数a,b在数轴上的位置如图所示,以下说法正确的是( )Aa+b=0BbaCab0D|b|a|3已知二次函数的图象如图所示,则下列结论:ac>0;a-b+c<0; 当时,;,其中错误的结论有ABCD4如图,在ABC中,B46°,C54°,AD平分BAC,交BC于D,DEAB,交AC于E,则CDE的大小是()A40°B43°C46°D54°5如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A8073B8072C8071D80706已知x=2是关于x的一元二次方程x2x2a=0的一个解,则a的值为()A0B1C1D27据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )ABCD8在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )ABCD9花园甜瓜是乐陵的特色时令水果甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为()kgA180B200C240D30010有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,矩形ABCD中,BC6,CD3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为_(结果保留)12如图,四边形ABCD是菱形,BAD60°,AB6,对角线AC与BD相交于点O,点E在AC上,若OE2,则CE的长为_13有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是_14从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是_15如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(,4),则AOC的面积为 16不等式组的非负整数解的个数是_三、解答题(共8题,共72分)17(8分)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(1,0),C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标18(8分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率19(8分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶(1)由定义知,取AB中点N,连结MN,MN与AB的关系是_(2)抛物线y对应的准蝶形必经过B(m,m),则m_,对应的碟宽AB是_(3)抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1求抛物线的解析式;在此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说明理由20(8分)如图,在平行四边形中,的平分线与边相交于点 (1)求证; (2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形21(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?22(10分)解方程组:.23(12分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角(0°180°且90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 (2)若120°,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 24观察下列等式:1×5+4=32;2×6+4=42;3×7+4=52;(1)按照上面的规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方2、D【解析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|a|【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确. 选D.3、C【解析】根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;根据自变量为-1时函数值,可得答案;根据观察函数图象的纵坐标,可得答案;根据对称轴,整理可得答案【详解】图象开口向下,得a0,图象与y轴的交点在x轴的上方,得c0,ac,故错误;由图象,得x=-1时,y0,即a-b+c0,故正确;由图象,得图象与y轴的交点在x轴的上方,即当x0时,y有大于零的部分,故错误;由对称轴,得x=-=1,解得b=-2a,2a+b=0故正确;故选D【点睛】考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点4、C【解析】根据DEAB可求得CDEB解答即可【详解】解:DEAB,CDEB46°,故选:C【点睛】本题主要考查平行线的性质:两直线平行,同位角相等快速解题的关键是牢记平行线的性质5、A【解析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1;第2个图案中涂有阴影的小正方形个数为:9=4×2+1;第3个图案中涂有阴影的小正方形个数为:13=4×3+1;发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1故选:A【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.6、C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值x=2是方程的解,422a=0,a=1故本题选C【考点】一元二次方程的解;一元二次方程的定义7、B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:将360000000用科学记数法表示为:3.6×1故选:B点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、A【解析】解:可把A、B、C、D选项折叠,能够复原(1)图的只有A故选A9、B【解析】根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.【详解】解:设小李所进甜瓜的数量为,根据题意得:,解得:,经检验是原方程的解答:小李所进甜瓜的数量为200kg故选:B【点睛】本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.10、C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形故选C考点:简单组合体的三视图二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】如图,连接OE,利用切线的性质得OD=3,OEBC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD-S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积【详解】连接OE,如图,以AD为直径的半圆O与BC相切于点E,ODCD3,OEBC,四边形OECD为正方形,由弧DE、线段EC、CD所围成的面积S正方形OECDS扇形EOD32,阴影部分的面积,故答案为【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了矩形的性质和扇形的面积公式12、5或【解析】分析:由菱形的性质证出ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案详解:四边形ABCD是菱形,AB=AD=6,ACBD,OB=OD,OA=OC, ABD是等边三角形,BD=AB=6, 点E在AC上, 当E在点O左边时 当点E在点O右边时 或;故答案为或.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.13、【解析】列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可【详解】解:列表得:两个骰子向上的一面的点数和小于6的有10种,则其和小于6的概率是,故答案为:【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比14、【解析】根据合数定义,用合数的个数除以数的总数即为所求的概率【详解】在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,这个数恰好是合数的概率是故答案为:【点睛】本题考查了概率的求法如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到合数的个数是解题的关键15、2【解析】解:OA的中点是D,点A的坐标为(6,4),D(1,2),双曲线y=经过点D,k=1×2=6,BOC的面积=|k|=1又AOB的面积=×6×4=12,AOC的面积=AOB的面积BOC的面积=121=216、1【解析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集【详解】解:解得:x,解得:x1,不等式组的解集为x1,其非负整数解为0、1、2、3、4共1个,故答案为1【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解三、解答题(共8题,共72分)17、 (1)抛物线的解析式为:y=x1+x+1(1)存在,P1(,2),P1(,),P3(,)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=SBCD+SCEF+SBEF可求出S与a的关系式,由二次函数的性质就可以求出结论试题解析:(1)抛物线y=x1+mx+n经过A(1,0),C(0,1)解得:,抛物线的解析式为:y=x1+x+1;(1)y=x1+x+1,y=(x)1+,抛物线的对称轴是x=OD=C(0,1),OC=1在RtOCD中,由勾股定理,得CD=CDP是以CD为腰的等腰三角形,CP1=CP1=CP3=CD作CHx轴于H,HP1=HD=1,DP1=2P1(,2),P1(,),P3(,);(3)当y=0时,0=x1+x+1x1=1,x1=2,B(2,0)设直线BC的解析式为y=kx+b,由图象,得,解得:,直线BC的解析式为:y=x+1如图1,过点C作CMEF于M,设E(a,a+1),F(a,a1+a+1),EF=a1+a+1(a+1)=a1+1a(0x2)S四边形CDBF=SBCD+SCEF+SBEF=BDOC+EFCM+EFBN,=+a(a1+1a)+(2a)(a1+1a),=a1+2a+(0x2)=(a1)1+a=1时,S四边形CDBF的面积最大=,E(1,1)考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值18、(1)150;(2)详见解析;(3).【解析】(1)用A类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解【详解】解:(1)15÷10%=150,所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150156030=45,喜欢“立定跳远”的学生所占百分比为120%40%10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,所以刚好抽到不同性别学生的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图19、(1)MN与AB的关系是:MNAB,MNAB,(2)2,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准蝶形必经过B(m,m),mm2,解得:m2或m0(不合题意舍去),当m2则,2x2,解得:x±2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键20、(1)见解析;(2)菱形.【解析】(1)根据角平分线的性质可得ADE=CDE,再由平行线的性质可得ABCD,易得AD=AE,从而可证得结论;(2)若点与点重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.【详解】(1)DE平分ADC,ADE=CDE.四边形ABCD是平行四边形,ABCD,AB=CD,AD=BC,AB=CD.AED=CDE.ADE=AED.AD=AE.BC=AE.AB=AE+EB.BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,点E与B重合,AD=AB.四边形ABCD是平行四边形平行四边形ABCD为菱形.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.21、A车行驶的时间为3.1小时,B车行驶的时间为2.1小时【解析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解分式方程即可,注意验根.【详解】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解得:t=2.1,经检验,t=2.1是原分式方程的解,且符合题意,1.4t=3.1答:A车行驶的时间为3.1小时,B车行驶的时间为2.1小时【点睛】本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.22、;.【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程可得,; 则原方程组转化为()或 (),解方程组()得,解方程组()得 ,原方程组的解是 .点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.23、(1)(2,0),(1,),(1,);y=x; y=x,y=x+;(2)半径为4,M(,);1r+1【解析】(1)如图2-1中,作BEOD交OA于E,CFOD交x轴于F求出OE、OF、CF、OD、BE即可解决问题;如图2-2中,作BEOD交OA于E,作PMOD交OA于M利用平行线分线段成比例定理即可解决问题;如图3-3中,作QMOA交OD于M利用平行线分线段成比例定理即可解决问题;(2)如图3中,作MFOA于F,作MNy轴交OA于N解直角三角形即可解决问题;如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、F求出FN=NE=1时,M的半径即可解决问题.【详解】(1)如图21中,作BEOD交OA于E,CFOD交x轴于F,由题意OC=CD=1,OA=BC=2,BD=OE=1,OD=CF=BE=,A(2,0),B(1,),C(1,),故答案为(2,0),(1,),(1,);如图22中,作BEOD交OA于E,作PMOD交OA于M,ODBE,ODPM,BEPM,=,y=x;如图23中,作QMOA交OD于M,则有,y=x+,故答案为y=x,y=x+;(2)如图3中,作MFOA于F,作MNy轴交OA于N,=120°,OMy轴,MOA=30°,MFOA,OA=4,OF=FA=2,FM=2,OM=2FM=4,MNy轴,MNOM,MN=,ON=2MN=,M(,);如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、FMKx轴,=120°,MKO=60°,MK=OK=2,MKO是等边三角形,MN=,当FN=1时,MF=1,当EN=1时,ME=+1,观察图象可知当M的半径r的取值范围为1r+1故答案为:1r+1【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题24、6×10+4=82 48×52+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】解:(1)由题目中的式子可得,第个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:n×(n+4)+4=n2+4n+4=(n+2)2,n×(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法