陕西省西安市重点中学2023年中考数学仿真试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则BDM的周长最小值为( )A5 cmB6 cmC8 cmD10 cm2如图,平行于BC的直线DE把ABC分成面积相等的两部分,则的值为()A1BC-1D+13如图,点P是AOB外的一点,点M,N分别是AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM2.5cm,PN3cm,MN4cm,则线段QR的长为( )A4.5cmB5.5cmC6.5cmD7cm4如图,ABCD,FEDB,垂足为E,1=60°,则2的度数是()A60°B50°C40°D30°5如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )ABCD6如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A或B或C或D或7如图,在中,则等于( )ABCD8如图,在直角坐标系中,有两点A(6,3)、B(6,0)以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )A(2,1)B(2,0)C(3,3)D(3,1)9如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则BOC的周长为()A9B10C12D1410下列运算,结果正确的是()Am2+m2=m4B2m2n÷mn=4mC(3mn2)2=6m2n4D(m+2)2=m2+411下列命题中,错误的是()A三角形的两边之和大于第三边B三角形的外角和等于360°C等边三角形既是轴对称图形,又是中心对称图形D三角形的一条中线能将三角形分成面积相等的两部分12如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:ac1;a+b=1;4acb2=4a;a+b+c1其中正确结论的个数是()A1 B2 C3 D4二、填空题:(本大题共6个小题,每小题4分,共24分)13已知抛物线y=ax2+bx+c=0(a0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 _14学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_对.15已知矩形ABCD,ADAB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_.16按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21±4.该返回舱的最高温度为_17如图,已知O是ABD的外接圆,AB是O的直径,CD是O的弦,ABD=58°,则BCD的度数是_18如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点(1)OM的长等于_;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:(1)这两种书的单价(2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?20(6分)如图,抛物线(a0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标21(6分)如图所示,点P位于等边的内部,且ACP=CBP(1)BPC的度数为_°;(2)延长BP至点D,使得PD=PC,连接AD,CD依题意,补全图形;证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积22(8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?23(8分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上(1)在图(1)中画出一个等腰ABE,使其面积为3.5;(2)在图(2)中画出一个直角CDF,使其面积为5,并直接写出DF的长24(10分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(3,0),点C的坐标为(0,3),对称轴为直线x1(1)求抛物线的解析式;(2)若点P在抛物线上,且SPOC4SBOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值25(10分)如图所示,在ABC中,BO、CO是角平分线ABC50°,ACB60°,求BOC的度数,并说明理由题(1)中,如将“ABC50°,ACB60°”改为“A70°”,求BOC的度数若An°,求BOC的度数26(12分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF(1)说明BEF是等腰三角形;(2)求折痕EF的长27(12分)如图,在ABC中,CAB90°,CBA50°,以AB为直径作O交BC于点D,点E在边AC上,且满足EDEA(1)求DOA的度数;(2)求证:直线ED与O相切参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】连接AD,由于ABC是等腰三角形,点D是BC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论【详解】如图,连接ADABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=×4×AD=12,解得:AD=6(cm)EF是线段AB的垂直平分线,点B关于直线EF的对称点为点A,AD的长为BM+MD的最小值,BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm)故选C【点睛】本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键2、C【解析】【分析】由DEBC可得出ADEABC,利用相似三角形的性质结合SADE=S四边形BCED,可得出,结合BD=ABAD即可求出的值【详解】DEBC,ADE=B,AED=C,ADEABC,SADE=S四边形BCED,SABC=SADE+S四边形BCED,故选C【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键3、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=25cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-25=25(cm),即可得出QR的长RN+NQ=3+25=35(cm)故选A考点:轴对称图形的性质4、D【解析】由EFBD,1=60°,结合三角形内角和为180°即可求出D的度数,再由“两直线平行,同位角相等”即可得出结论【详解】解:在DEF中,1=60°,DEF=90°,D=180°-DEF-1=30°ABCD,2=D=30°故选D【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角5、A【解析】先利用勾股定理计算出AB,再在RtBDE中,求出BD即可;【详解】解:C=90°,AC=4,BC=3,AB=5,ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=AC=4,DE=BC=3,BE=AB-AE=5-4=1,在RtDBE中,BD=,故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等6、B【解析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,使成立的取值范围是或,故选B【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.7、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得详解:在RtABC中,AB=10、AC=8,BC=,sinA=.故选:A点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义8、A【解析】根据位似变换的性质可知,ODCOBA,相似比是,根据已知数据可以求出点C的坐标【详解】由题意得,ODCOBA,相似比是,又OB=6,AB=3,OD=2,CD=1,点C的坐标为:(2,1),故选A【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用9、A【解析】利用平行四边形的性质即可解决问题.【详解】四边形ABCD是平行四边形,AD=BC=3,OD=OB=2,OA=OC=4,OBC的周长=3+2+4=9,故选:A【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.10、B【解析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案【详解】A. m2+m2=2m2,故此选项错误;B. 2m2n÷mn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.11、C【解析】根据三角形的性质即可作出判断【详解】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形的一条中线能将三角形分成面积相等的两部分,正确故选:C【点睛】本题考查了命题真假的判断,属于基础题根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项12、C【解析】根据图象知道:a1,c1,ac1,故正确;顶点坐标为(1/2 ,1),x="-b/2a" ="1/2" ,a+b=1,故正确;根据图象知道:x=1时,y=a+b+c1,故错误;顶点坐标为(1/2 ,1),=1,4ac-b2=4a,故正确其中正确的是故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、或x=-1【解析】由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴【详解】点A的坐标为(-2,0),线段AB的长为8,点B的坐标为(1,0)或(-10,0)抛物线y=ax2+bx+c(a0)与x轴交于A、B两点,抛物线的对称轴为直线x=2或x=-1故答案为x=2或x=-1【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键14、1【解析】利用树状图展示所有1种等可能的结果数【详解】解:画树状图为:共有1种等可能的结果数故答案为1【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率15、8【解析】根据题意作出图形即可得出答案,【详解】如图,ADAB,CDE1,ABE2,ABE3,BCE4,CDE5,ABE6,ADE7,CDE8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.16、17【解析】根据返回舱的温度为21±4,可知最高温度为21+4;最低温度为21-4【详解】解:返回舱的最高温度为:21+4=25;返回舱的最低温度为:21-4=17;故答案为:17【点睛】本题考查正数和负数的意义±4指的是比21高于4或低于417、32°【解析】根据直径所对的圆周角是直角得到ADB=90°,求出A的度数,根据圆周角定理解答即可【详解】AB是O的直径, ADB=90°, ABD=58°, A=32°, BCD=32°, 故答案为32°18、(1)4;(2)见解析;【解析】解:(1)由勾股定理可得OM的长度 (2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。【详解】(1)OM=4;故答案为4(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0a4),PA2=(a1)2+a2,PB2=(a4)2+a2,PA2+PB2=4(a)2+,0a4,当a=时,PA2+PB2 取得最小值,综上,需作出点P满足线段OP的长=;取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,则点P即为所求【点睛】(1) 根据勾股定理即可得到结论;(2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)文学书的单价为10元,则科普书的单价为15元;(2)27本【解析】(1)根据等量关系:文学书数量科普书数量4本可以列出方程,解方程即可(2)根据题意列出不等式解答即可【详解】(1)设文学书的单价为x元,则科普书的单价为1.5x元,根据题意得:=4, 解得:x10,经检验:x10是原方程的解,1.5x15,答:文学书的单价为10元,则科普书的单价为15元(2)设最多买科普书m本,可得:15m+10(56m)696,解得:m27.2,最多买科普书27本【点睛】此题考查分式方程的实际应用,不等式的实际应用,正确理解题意列出方程或是不等式是解题的关键.20、(1);(2)(,0);(3)1,M(2,3)【解析】试题分析:方法一:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)首先根据抛物线的解析式确定A点坐标,然后通过证明ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标(3)MBC的面积可由SMBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M方法二:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出ACBC,从而求出圆心坐标(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出MBC的面积函数,从而求出M点试题解析:解:方法一:(1)将B(1,0)代入抛物线的解析式中,得:0=16a×12,即:a=,抛物线的解析式为:(2)由(1)的函数解析式可求得:A(1,0)、C(0,2);OA=1,OC=2,OB=1,即:OC2=OAOB,又:OCAB,OACOCB,得:OCA=OBC;ACB=OCA+OCB=OBC+OCB=90°,ABC为直角三角形,AB为ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0)(3)已求得:B(1,0)、C(0,2),可得直线BC的解析式为:y=x2;设直线lBC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=,即:,且=0;11×(2b)=0,即b=1;直线l:y=x1所以点M即直线l和抛物线的唯一交点,有:,解得:即 M(2,3)过M点作MNx轴于N,SBMC=S梯形OCMN+SMNBSOCB=×2×(2+3)+×2×3×2×1=1方法二:(1)将B(1,0)代入抛物线的解析式中,得:0=16a×12,即:a=,抛物线的解析式为:(2)y=(x1)(x+1),A(1,0),B(1,0)C(0,2),KAC= =2,KBC= =,KAC×KBC=1,ACBC,ABC是以AB为斜边的直角三角形,ABC的外接圆的圆心是AB的中点,ABC的外接圆的圆心坐标为(,0)(3)过点M作x轴的垂线交BC于H,B(1,0),C(0,2),lBC:y=x2,设H(t,t2),M(t,),SMBC=×(HYMY)(BXCX)=×(t2)(10)=t2+1t,当t=2时,S有最大值1,M(2,3) 点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键21、(1)120°;(2)作图见解析;证明见解析;(3) .【解析】【分析】(1)根据等边三角形的性质,可知ACB=60°,在BCP中,利用三角形内角和定理即可得;(2)根据题意补全图形即可;证明,根据全等三角形的对应边相等可得,从而可得;(3)如图2,作于点,延长线于点,根据已知可推导得出,由(2)得,根据 即可求得.【详解】(1)三角形ABC是等边三角形,ACB=60°,即ACP+BCP=60°,BCP+CBP+BPC=180°,ACP=CBP,BPC=120°,故答案为120;(2)如图1所示.在等边中,为等边三角形,在和中, ,;(3)如图2,作于点,延长线于点,又由(2)得, .【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质等,熟练掌握相关性质定理、正确添加辅助线是解题的关键.22、100或200【解析】试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,列方程得,(8+×4)=4800,x2300x+20000=0,解得x1=200,x2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元考点:一元二次方程的应用23、 (1)见解析;(2)DF 【解析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案【详解】(1)如图(1)所示:ABE,即为所求;(2)如图(2)所示:CDF即为所求,DF=【点睛】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键24、(1)yx2+2x3;(2)点P的坐标为(2,21)或(2,5);(3)【解析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|然后依据SPOC2SBOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可【详解】解:(1)抛物线与x轴的交点A(3,0),对称轴为直线x1,抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为ya(x+3)(x1),将点C(0,3)代入,得:3a3,解得a1,则抛物线解析式为y(x+3)(x1)x2+2x3;(2)设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|SPOC2SBOC,OC|a|2×OCOB,即×3×|a|2××3×1,解得a±2当a2时,点P的坐标为(2,21);当a2时,点P的坐标为(2,5)点P的坐标为(2,21)或(2,5)(3)如图所示:设AC的解析式为ykx3,将点A的坐标代入得:3k30,解得k1,直线AC的解析式为yx3设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3)QDx3( x2+2x3)x3x22x+3x23x(x2+3x+)(x+)2+, 当x时,QD有最大值,QD的最大值为【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用25、(1)125°;(2)125°;(3)BOC=90°+n°【解析】如图,由BO、CO是角平分线得ABC=21,ACB=22,再利用三角形内角和得到ABC+ACB+A=180°,则21+22+A=180°,接着再根据三角形内角和得到1+2+BOC=180°,利用等式的性质进行变换可得BOC=90°+A,然后根据此结论分别解决(1)、(2)、(3)【详解】如图,BO、CO是角平分线,ABC=21,ACB=22,ABC+ACB+A=180°,21+22+A=180°,1+2+BOC=180°,21+22+2BOC=360°,2BOCA=180°,BOC=90°+A,(1)ABC=50°,ACB=60°,A=180°50°60°=70°,BOC=90°+×70°=125°;(2)BOC=90°+A=125°;(3)BOC=90°+n°【点睛】本题考查了三角形内角和定理:三角形内角和是180°主要用在求三角形中角的度数:直接根据两已知角求第三个角;依据三角形中角的关系,用代数方法求三个角;在直角三角形中,已知一锐角可利用两锐角互余求另一锐角26、(1)见解析;(2).【解析】(1)根据折叠得出DEF=BEF,根据矩形的性质得出ADBC,求出DEF=BFE,求出BEF=BFE即可;(2)过E作EMBC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在RtEMF中,由勾股定理求出即可【详解】(1)现将纸片折叠,使点D与点B重合,折痕为EF,DEF=BEF四边形ABCD是矩形,ADBC,DEF=BFE,BEF=BFE,BE=BF,即BEF是等腰三角形;(2)过E作EMBC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM现将纸片折叠,使点D与点B重合,折痕为EF,DE=BE,DO=BO,BDEF四边形ABCD是矩形,BC=8,AD=BC=8,BAD=90°在RtABE中,AE2+AB2=BE2,即(8BE)2+62=BE2,解得:BE=DE=BF,AE=8DE=8=BM,FM=在RtEMF中,由勾股定理得:EF=故答案为【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键27、(1)DOA =100°;(2)证明见解析.【解析】试题分析:(1)根据CBA=50°,利用圆周角定理即可求得DOA的度数;(2)连接OE,利用SSS证明EAOEDO,根据全等三角形的性质可得EDO=EAO=90°,即可证明直线ED与O相切试题解析:(1)DBA=50°,DOA=2DBA=100°;(2)证明:连接OE,在EAO和EDO中,AO=DO,EA=ED,EO=EO,EAOEDO,得到EDO=EAO=90°,直线ED与O相切考点:圆周角定理;全等三角形的判定及性质;切线的判定定理