黄冈2022-2023学年中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1二次函数的图象如图所示,则下列各式中错误的是( )Aabc0Ba+b+c0Ca+cbD2a+b=02若,则( )ABCD3如图,正六边形ABCDEF内接于O,半径为4,则这个正六边形的边心距OM的长为()A2B2CD44如下字体的四个汉字中,是轴对称图形的是( )ABCD5圆锥的底面直径是80cm,母线长90cm,则它的侧面积是ABCD6如图,在O中,弦BC1,点A是圆上一点,且BAC30°,则的长是( )ABCD7下列因式分解正确的是ABCD8如图,RtABC中,C=90°,AC=4,BC=4,两等圆A,B外切,那么图中两个扇形(即阴影部分)的面积之和为()A2B4C6D89如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为()A5B4C3D210一个多边形的内角和比它的外角和的倍少180°,那么这个多边形的边数是( )A7B8C9D10二、填空题(本大题共6个小题,每小题3分,共18分)11若点M(k1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k1)x+k的图象不经过第 象限12分解因式:8x²-8xy+2y²= _ .13如图,中,平分,与相交于点,则的长等于_.14月球的半径约为1738000米,1738000这个数用科学记数法表示为_15如图,PA,PB分别为的切线,切点分别为A、B,则_16=_三、解答题(共8题,共72分)17(8分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点下图中的P,Q两点即为同族点 (1)已知点A的坐标为(3,1),在点R(0,4),S(2,2),T(2,3)中,为点A的同族点的是 ;若点B在x轴上,且A,B两点为同族点,则点B的坐标为 ;(2)直线l:y=x3,与x轴交于点C,与y轴交于点D,M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围18(8分)如图,点A、B、C、D在同一条直线上,CEDF,EC=BD,AC=FD,求证:AE=FB19(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60m100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表征文比赛成绩频数分布表分数段频数频率60m70380.3870m80a0.3280m90bc90m100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是 ;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数20(8分)已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处如图,已知折痕与边BC交于点O,连接AP、OP、OA(1)求证:;(2)若OCP与PDA的面积比为1:4,求边AB的长21(8分)如图,ABC中,C=90°,A=30°用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);连接BD,求证:BD平分CBA22(10分)解方程式:- 3 = 23(12分)如图,ABC,CDE均是等腰直角三角形,ACB=DCE=90°,点E在AB上,求证:CDACEB24某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共_人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据二次函数的图象与性质逐一判断即可【详解】解:由图象可知抛物线开口向上,对称轴为,故D正确,又抛物线与y轴交于y轴的负半轴,故A正确;当x=1时,即,故B错误;当x=-1时,即,故C正确,故答案为:B【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质2、D【解析】等式左边为非负数,说明右边,由此可得b的取值范围【详解】解:,解得故选D【点睛】本题考查了二次根式的性质:,3、B【解析】分析:连接OC、OB,证出BOC是等边三角形,根据锐角三角函数的定义求解即可详解:如图所示,连接OC、OB多边形ABCDEF是正六边形,BOC=60°,OC=OB,BOC是等边三角形,OBM=60°,OM=OBsinOBM=4×2.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键4、A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形故选A考点:轴对称图形5、D【解析】圆锥的侧面积=×80×90=3600(cm2) .故选D6、B【解析】连接OB,OC首先证明OBC是等边三角形,再利用弧长公式计算即可【详解】解:连接OB,OCBOC2BAC60°,OBOC,OBC是等边三角形,OBOCBC1,的长,故选B【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型7、D【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可【详解】解:A、,无法直接分解因式,故此选项错误;B、,无法直接分解因式,故此选项错误;C、,无法直接分解因式,故此选项错误;D、,正确故选:D【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键8、B【解析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由A+B=90°可知阴影部分的面积等于一个圆的面积的【详解】在ABC中,依据勾股定理可知AB=8,两等圆A,B外切,两圆的半径均为4,A+B=90°,阴影部分的面积=4故选:B【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键9、C【解析】根据左视图是从左面看到的图形求解即可.【详解】从左面看,可以看到3个正方形,面积为3,故选:C【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.10、A【解析】设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.【详解】设这个多边形的边数为n,依题意得:180(n-2)=360×3-180,解之得n=7.故选A.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.二、填空题(本大题共6个小题,每小题3分,共18分)11、一【解析】试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案点M(k1,k+1)关于y轴的对称点在第四象限内, 点M(k1,k+1)位于第三象限,k10且k+10, 解得:k1,y=(k1)x+k经过第二、三、四象限,不经过第一象限考点:一次函数的性质12、1【解析】提取公因式1,再对余下的多项式利用完全平方公式继续分解完全平方公式:a1±1ab+b1=(a±b)1【详解】8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1故答案为:1(1x-y)1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解13、3【解析】如图,延长CE、DE,分别交AB于G、H,由BAD=ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CGAB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,BAD=ADE=60°,ADH是等边三角形,DH=AD=AH=5,DHA=60°,AC=BC,CE平分ACB,ACB=90°,AB=8,AG=AB=4,CGAB,GH=AH=AG=5-4=1,DHA=60°,GEH=30°,EH=2GH=2DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.14、1.738×1【解析】解:将1738000用科学记数法表示为1.738×1故答案为1.738×1【点睛】本题考查科学记数法表示较大的数,掌握科学计数法的计数形式,难度不大15、50°【解析】由PA与PB都为圆O的切线,利用切线长定理得到,再利用等边对等角得到一对角相等,由顶角的度数求出底角的度数,再利用弦切角等于夹弧所对的圆周角,可得出,由的度数即可求出的度数【详解】解:,PB分别为的切线,又,则故答案为:【点睛】此题考查了切线长定理,切线的性质,以及等腰三角形的性质,熟练掌握定理及性质是解本题的关键16、13【解析】2+94+613.故答案是:13.三、解答题(共8题,共72分)17、(1)R,S;(,0)或(4,0);(2);m或m1【解析】(1)点A的坐标为(2,1),2+1=4,点R(0,4),S(2,2),T(2,2)中,0+4=4,2+2=4,2+2=5,点A的同族点的是R,S;故答案为R,S;点B在x轴上,点B的纵坐标为0,设B(x,0),则|x|=4,x=±4,B(4,0)或(4,0);故答案为(4,0)或(4,0);(2)由题意,直线与x轴交于C(2,0),与y轴交于D(0,) 点M在线段CD上,设其坐标为(x,y),则有:,且点M到x轴的距离为,点M到y轴的距离为,则点M的同族点N满足横纵坐标的绝对值之和为2即点N在右图中所示的正方形CDEF上点E的坐标为(,0),点N在直线上, 如图,设P(m,0)为圆心, 为半径的圆与直线y=x2相切,PC=2,OP=1,观察图形可知,当m1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m也满足条件,满足条件的m的范围:m或m118、见解析【解析】根据CEDF,可得ECA=FDB,再利用SAS证明ACEFDB,得出对应边相等即可【详解】解:CEDFECA=FDB,在ECA和FDB中 ECAFDB,AE=FB【点睛】本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键19、(1)0.2;(2)答案见解析;(3)300【解析】第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.【详解】解:(1)10.380.320.1=0.2,故答案为0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇)【点睛】掌握有关频率和频数的相关概念和计算,是解答本题的关键.20、 (1)详见解析;(2)10.【解析】只需证明两对对应角分别相等可得两个三角形相似;故.根据相似三角形的性质求出PC长以及AP与OP的关系,然后在RtPCO中运用勾股定理求出OP长,从而求出AB长【详解】四边形ABCD是矩形,AD=BC,DC=AB,DAB=B=C=D=90°.由折叠可得:AP=AB,PO=BO,PAO=BAO,APO=B.APO=90°.APD=90°CPO=POC.D=C,APD=POC.OCPPDA.OCP与PDA的面积比为1:4,OCPD=OPPA=CPDA=14=12.PD=2OC,PA=2OP,DA=2CP.AD=8,CP=4,BC=8.设OP=x,则OB=x,CO=8x.在PCO中,C=90,CP=4,OP=x,CO=8x,x2=(8x)2+42.解得:x=5.AB=AP=2OP=10.边AB的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.21、(1)作图见解析;(2)证明见解析【解析】(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出ABD=A=30°,然后求出CBD=30°,从而得到BD平分CBA【详解】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:DE是AB边上的中垂线,A=30°,AD=BD,ABD=A=30°,C=90°,ABC=90°A=90°30°=60°,CBD=ABCABD=60°30°=30°,ABD=CBD,BD平分CBA【点睛】考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.22、x=3【解析】先去分母,再解方程,然后验根.【详解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.【点睛】此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.23、见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可试题解析:证明:ABC、CDE均为等腰直角三角形,ACB=DCE=90°,CE=CD,BC=AC,ACBACE=DCEACE,ECB=DCA,在CDA与CEB中,CDACEB考点:全等三角形的判定;等腰直角三角形24、(1)100;(2)见解析;(3)108°;(4)1250.【解析】试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案试题解析:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:130%20%35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人)答:全校的学生中参与这次活动的大约有1250人考点:条形统计图;扇形统计图;样本估计总体.