欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    有限差分法及热传导数值计算.pptx

    • 资源ID:88360834       资源大小:443.74KB        全文页数:40页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    有限差分法及热传导数值计算.pptx

    数值解法的实质数值解法的实质 对物理问题进行数值解法的基本思路可以概括对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。量的值。该方法称为数值解法。这些离散点上被求物理量值的集合称为该物理这些离散点上被求物理量值的集合称为该物理量的数值解。量的数值解。第1页/共40页2.1 2.1 导热问题数值解法的基本思想导热问题数值解法的基本思想导热问题数值解法的基本思想导热问题数值解法的基本思想离散化离散化离散化离散化 理论解 在规定的边界条件下积分,有很大局限性;数值解 借助计算机,前景广阔。1.有限差分法原理(连续的问题 离散的问题)以有限差分 无限微分 无限划分 实质 达到精度 以差分代数方程 微分方程 计算机帮助 (当离散点足够多时可以满足要求)第2页/共40页建立控制方程及定解条件确定节点(区域离散化)建立节点物理量的代数方程设立温度场的迭代初值求解代数方程是否是否收敛收敛解的分析改进初场是否物理问题的数值求解过程第3页/共40页 下面先对稳态导热问题中位于计算区域内部的节点(简称内节点)介绍其离散方程的建立方法,而位于边界上的节点及非稳态导热中的非稳态项的离散将在以后讨论。为讨论方便,把如图中的节点(m,n)及其邻点取出并放大,如图所示。图4-3 内节点离散方程的建立2.2 2.2 内节点离散方程的建立方法内节点离散方程的建立方法第4页/共40页(b)xynm(m,n)MN基本概念:控制单元、网格划分、节点、边界、步长等二维矩二维矩形域内形域内稳态稳态、常物性常物性的导热的导热问题问题第5页/共40页 下面以一个二维导热问题为例进行分析(有限差分法):把一个二维物体在X及Y方向上分别以 及 距离分割成矩形网格。则其中节点(m,n)的坐标为:X=m ,Y=n ,其余节点类推。(举例)三种基本差分格式:以节点(m,n)为例(1)向前差分:(2)向后差分:(3)中心差分:第6页/共40页对无内热源、稳态、二阶导热微分方程,有:用中心差分格式因为:所以:第7页/共40页 最终得:如果取正方形网格,即取 ,则上式为:tm+1,n+tm-1,n+tm,n+1+tm,n-1-4tm,n=0 上式说明:在导热系数为常量时,热量的转移可用温度差来表达;在稳态下,流向任何节点的热量的总和必须为零。对于每个节点写出上式,然后联立求解方程组,即可求解。(如边界温度已知,可逐步递推求解)第8页/共40页泰勒级数展开法根据泰勒级数展开式,用节点根据泰勒级数展开式,用节点(m,nm,n)的温度的温度t tm,nm,n来表示节点来表示节点(m+1,nm+1,n)而温度而温度t tm+1,nm+1,n用节点用节点(m,n)(m,n)的温度的温度t tm,nm,n来表示节点来表示节点(m-1,n)(m-1,n)的的温度温度t tm-1,nm-1,n第9页/共40页将上两式相加可得将上两式相加可得将上式改写成将上式改写成 的表达式,有的表达式,有同样可得:同样可得:表示未明确写出的表示未明确写出的级数余项中的级数余项中的X X的最低阶数为的最低阶数为2 2第10页/共40页根据导热问题的控制方程根据导热问题的控制方程 (导热微分方程导热微分方程 )若若 x=y x=y 则有则有 得第11页/共40页xy第12页/共40页如图所示如图所示 边界节点边界节点 (m,n)(m,n)只能代表半个元体,若边界上有只能代表半个元体,若边界上有向该元体传递的热流密度为向该元体传递的热流密度为q q,据能量守恒定律对该元体有:,据能量守恒定律对该元体有:1.边界节点离散方程的建立:(1)(1)平直边界上的节点平直边界上的节点2.3 2.3 2.3 2.3 边界节点边界节点边界节点边界节点离散方程的建立及代数方程的求解离散方程的建立及代数方程的求解离散方程的建立及代数方程的求解离散方程的建立及代数方程的求解傅里叶定律第13页/共40页(2)(2)外部角点外部角点如图所示,二维墙角计算区域中,该节点外角点仅代表如图所示,二维墙角计算区域中,该节点外角点仅代表 1/4 1/4 个以个以 为边长的元体。假设边界上有向该元体传递为边长的元体。假设边界上有向该元体传递的热流密度为的热流密度为 ,则据能量守恒定律得其热平衡式为:,则据能量守恒定律得其热平衡式为:第14页/共40页xyqw第15页/共40页(3)(3)内部角点内部角点如图所示内部角点代表了如图所示内部角点代表了 3/4 3/4 个元体,在同样的假设条个元体,在同样的假设条件下有件下有第16页/共40页xyqw第17页/共40页讨论关于边界热流密度的三种情况:(1 1)绝热边界)绝热边界即令上式即令上式 即可。即可。(2 2)值不为零值不为零流入元体,流入元体,取正,流出元体,取正,流出元体,取负使取负使用上述公式用上述公式 (3 3)对流边界)对流边界此时此时 ,将此表达式代入上述方程,将此表达式代入上述方程,并将此项中的并将此项中的 与等号前的与等号前的 合并。合并。对于对于 的情形有的情形有第18页/共40页(a a)平直边界)平直边界(b b)外部角点)外部角点(c c)内部角点)内部角点第19页/共40页2.代数方程的求解方法 2 2)迭代法:迭代法:先对要计算的场作出假设(设先对要计算的场作出假设(设定初场),在迭代计算中不断予以改进,直定初场),在迭代计算中不断予以改进,直到计算前的假定值与计算结果相差小于允许到计算前的假定值与计算结果相差小于允许值为止的方法,称迭代计算收敛。值为止的方法,称迭代计算收敛。1 1)直接解法直接解法:通过有限次运算获得精确通过有限次运算获得精确解的方法,如:矩阵求解,高斯消元法。解的方法,如:矩阵求解,高斯消元法。第20页/共40页迭代法目前应用较多的是:1 1)高斯)高斯赛德尔迭代法:赛德尔迭代法:每次迭代计算,每次迭代计算,均是使用节点温度的最新值。均是使用节点温度的最新值。2 2)用雅可比迭代法:)用雅可比迭代法:每次迭代计算,均用每次迭代计算,均用上一次迭代计算出的值。上一次迭代计算出的值。第21页/共40页设有一三元方程组设有一三元方程组:其中其中 (i=1,2,3 i=1,2,3;j=1,2,3 j=1,2,3)及)及 是已知的系数(均不为零)及常数。是已知的系数(均不为零)及常数。第22页/共40页采用高斯采用高斯赛德尔迭代法的步骤:赛德尔迭代法的步骤:(1 1)将三元方程变形为迭式方程:)将三元方程变形为迭式方程:第23页/共40页(2 2)假设一组解(迭代初场),记为)假设一组解(迭代初场),记为:并代入迭代方程求得第一并代入迭代方程求得第一 次解次解 每次计算均用每次计算均用最新值最新值代入。代入。(3 3)以新的初场)以新的初场 重复计算,直到相邻两重复计算,直到相邻两次迭代值之差小于允许值,则称迭代收敛,次迭代值之差小于允许值,则称迭代收敛,计算终止。计算终止。第24页/共40页判断迭代是否收敛的准则:判断迭代是否收敛的准则:k k及及k+1k+1表示迭代次数;表示迭代次数;第第k k次迭代得到的最大值次迭代得到的最大值当有接近于零的当有接近于零的t t 时,第三个较好时,第三个较好迭代过程结束第25页/共40页说明:说明:1 1)对于一个代数方程组,若选用的迭代方)对于一个代数方程组,若选用的迭代方式不合适,有可能导致发散,即称式不合适,有可能导致发散,即称迭代过程迭代过程发散发散;2 2)对于常物性导热问题,组成的差分方程)对于常物性导热问题,组成的差分方程组,迭代公式的选择应使一个迭代变量的系组,迭代公式的选择应使一个迭代变量的系数总是大于或等于该式中其他变量系数绝对数总是大于或等于该式中其他变量系数绝对值的代数和,此时,结果一定收敛。值的代数和,此时,结果一定收敛。第26页/共40页3 3)采用热平衡法导出差分方程时,若每一)采用热平衡法导出差分方程时,若每一个方程都选用导出该方程中心节点的温度作个方程都选用导出该方程中心节点的温度作为迭代变量,则上述条件必满足,迭代一定为迭代变量,则上述条件必满足,迭代一定收敛。收敛。这一这一条件条件数学上称主对角线占优(对角占优)数学上称主对角线占优(对角占优);第27页/共40页 当计算区域中出现曲线边界或倾斜的边界时,常当计算区域中出现曲线边界或倾斜的边界时,常常用阶梯形的常用阶梯形的折线折线来模拟真实边界,然后再用上述方法建来模拟真实边界,然后再用上述方法建立起边界节点的离散方程。例如,如要用数值方法确定如立起边界节点的离散方程。例如,如要用数值方法确定如图图4-6a4-6a所示二维区域的形状因子,显然,根据对称性我们所示二维区域的形状因子,显然,根据对称性我们只要考虑四分之一的计算区域即可。图只要考虑四分之一的计算区域即可。图4-6a4-6a中的内圆边界中的内圆边界可以来用图可以来用图4-6b4-6b所示的阶梯形的折线边界来近似。只要网所示的阶梯形的折线边界来近似。只要网格取得足够密,这种近似处理方法仍能获得相当准确的结格取得足够密,这种近似处理方法仍能获得相当准确的结果。处理不规则边界的更好的方法要用到坐标变换,这里果。处理不规则边界的更好的方法要用到坐标变换,这里不做介绍。不做介绍。图4-6 不规则区域的处理第28页/共40页2.4 2.4 非稳态导热问题的数值解法非稳态导热问题的数值解法 非稳态导热与稳态导热的主要差别在于控制方程中多了一个非稳态项,而其中扩散项的离散方法与稳态导热是一样的。因此,本节讨论重点将放在非稳态项的离散以及扩散项离散时所取时间层的不同对计算带来的影响上。1.泰勒展开法 首先以一维非稳态导热为例讨论时间空间区域的离散化。如图4-8所示,x为空间坐标,我们将计算区域划分为(N-1)等份,得到N个空间节点;为时间坐标,我们将时间坐标上的计算区域划分为(I-1)等份,得到I个时间节点。从一个时间层到下一个时间层的间隔称为时间步长。空间网格线与时间网格线的交点,如(n,i),代表了时间空间区域中的一个节点的位置,相应的温度记为tn(i)。非稳态项 的离散有三种不同的格式。如果将函数在节点(n,i+1)对点(n,i)作泰勒展开,可有第29页/共40页于是有第30页/共40页 由式(b)可得在点(n,i)处一阶导数的一种差分表示式,的向前差分:类似地,将t在点(n,i-1)对点(n,i)作泰勒展开,可得 的向后差分的表达式:如果将t在点(n,i+1)及(n,i-1)处的展开式相加,则可得一阶导数的中心差分的表达式:在非稳态导热问题的数值计算中,非稳态项的上述三种差分格式都有人采用,本书主要采用向前差分的格式,但也简单介绍了向后差分的格式。第31页/共40页 至此,对于形如式(3-10)所示的一维非稳态导热方程,如扩散项取中心差分,非稳态项取向前差分,则有 此式可进一步改写为 求解非稳态导热方程就是从已知的初始温度分布出发,根据边界条件依次求得以后各个时间层上的温度值,式(4-14b)是对平板中各内点进行这种计算的公式。由该式可见,一旦i层上各节点的温度已知,可立即算出(i+1)时层上各内点的温度,而不必求解联立方程,因而式(4-14)所代表的计算格式称为显式差分格式。显式的优点是计算工作量小,缺点是对时间步长及空间步长有一定的限制,否则会出现不合理的结果。第32页/共40页 如果把式(4-14a)中的扩散项也用(i+1)时层上的值来表示,则有 式中已知的是i时层的值tn(i),而未知量有3个,因此不能直接由上式立即算出tn(i+1)之值,而必须求解(i+1)时层的一个联立方程才能得出(i十1)时层各节点的温度,因而式(4-15)称为隐式差分格式。从时空坐标系中的节点(n,i+1)来看,式(4-15)的左端是非稳态项的一种向后差分。隐式格式的缺点是计算工作量大,但它对步长没有限制,不会出现解的振荡现象。以上是将一维非稳态导热方程中的两个导数项用相应的差分表示式代替而建立差分方程的,这种方法称为泰勒展开法。第33页/共40页2.热平衡法 这种方法不受网格是否均分及物性是否为常数等限制,是更为一般的方法。图4-9示出了一无限大平板的右面部,其右侧面受到周围流体的冷却,表面传热系数为h。此时边界节点N代表宽度为x/2的元体(图中有阴影线的部分)。对该元体应用能量守恒定律可得经整理得一维非稳态导热第34页/共40页 式中 是以x特征长度的傅里叶数,称为网格傅里叶数,一项可作如下变化:式中Fo及Bi分别为网格傅里叶数及网格毕渥数。于是式(4-16b)又可改写为 至此,我们可以把第三类边界条件下、厚度为2的无限大平板的数值计算问题作一归纳。由于问题的对称性,只要求解一半厚度即可。设将计算区域等分为N-1等份(N个节点,见图4-10),节点1为绝热的对称面,节点N为对流边界,则与微分形式的数学描写相对应的离散形式为第35页/共40页第36页/共40页 其中式(4-20)是绝热边界的一种离散方式,在确定t1(i+1)之值时需要用到t-1(i)。根据对称性该值等于t2(i)。这样,从已知的初始分布t0出发,利用式(4-17)及(4-19)可以依次求得第二时层、第三时层直到 i 时层上的温度值(见图4-8)。至于空间步长x及时间步长的选取,原则上步长越小,计算结果越接近于精确解,但所需的计算机内存及计算时间则大大增加。此外,x及之间的关系还受到显式格式稳定性的影响。下面我们从离散方程的结构来分析,说明稳定性限制的物理意义。式(4-17)的物理意义是很明确的。该式表明,点n上i+l时刻的温度是在该点i时刻温度的基础上计及了左右两邻点温度的影响后得出的。假如两邻点的影响保持不变,合理的情况是:i时刻点n的温度越高,则其相继时刻的温度也较高;反之,i时刻点n的温度越低,则其相继时刻的温度也较低。在差分方程中要满足这种合理性是有条件的,即式(4-17)中tn(i)前的系数必须大于或等于零。如用判别式表示,则为必须保证第37页/共40页 否则将会出现十分不合理的情况。式(4-21)是从一维问题显式格式的内节点方程得出的限制条件。同样的讨论还可以对显式格式的对流边界节点方程式(4-19)进行。显然,为了得出合理的解应有 显然,这一要求比内点的限制还要苛刻。当由边界条件及内节点的稳定性条件得出的Fo不同时,应以较小的Fo为依据来确定所允许采用的时间步长。当然,对第一类或第二类边界条件的问题,则只有内点的限制条件。即 第38页/共40页 小结小结:1.导热问题数值求解的基本思想基本概念基本概念:2.有限差分法 基本原理基本原理:了解非稳态导热问题的数值解法了解非稳态导热问题的数值解法了解非稳态导热问题的数值解法了解非稳态导热问题的数值解法掌握节点掌握节点掌握节点掌握节点离散方程的建立及代数方程的求解离散方程的建立及代数方程的求解离散方程的建立及代数方程的求解离散方程的建立及代数方程的求解第39页/共40页感谢您的观看!第40页/共40页

    注意事项

    本文(有限差分法及热传导数值计算.pptx)为本站会员(莉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开