4.2提公因式法(2).ppt
4.2提公因式法(2)1、多项式的第一项系数为负数时,_ _ _复习:提公因式法2、公因式的系数是_;_;3、字母取多项式各项中都含有的_;_;4、相同字母的指数取各项中最小的一个,即_._.多项式各项系数的最大公因数多项式各项系数的最大公因数相同的字母相同的字母最低次幂最低次幂先提取先提取“-”-”号,注意多项式的各项变号;号,注意多项式的各项变号;口诀:首项负,提负号,要变号.(1)a(2x+3)+2b(2x+3)=(2x+3)(a+2b)(2)4x(a+b)-2y(a+b)=2(a+b)(2x-y)(3)(3a+2)(x-y)-(6a-1)(x-y)=(x-y)(3a+2)-(6a-1)试一试试一试=(x-y)(3a+2-6a+1)=(x-y)(-3a+3)=-3(x-y)(a-1)公因式公因式 是是多项式多项式形式,怎样形式,怎样运用提公运用提公因式法分解因式?因式法分解因式?想一想类似a(c+d)+b(c+d)的形式的分解因式,实际上与我们学过的am+bm形式类似,只需将式子中的(c+d)看成以前的m即可。在下列各式等号右边的括号前填入在下列各式等号右边的括号前填入“+”或或“”号,使等式成立:号,使等式成立:(1)(a-b)=_(b-a);(2)(a-b)2=_(b-a)2;(3)(a-b)3=_(b-a)3;(4)(a-b)4=_(b-a)4;(5)(a+b)5=_(b+a)5;(6)(a+b)6=_(b+a)6.+(7)(a+b)=_(-b-a);-(8)(a+b)2=_(-a-b)2.+由此可知规律:由此可知规律:(1)a-b(1)a-b 与与 -a+b-a+b 互为相反数互为相反数.(a-b)n=(b-a)n (n是偶数是偶数)(a-b)n=-(b-a)n (n是奇数是奇数)(2)a+b(2)a+b与与b+a b+a 互为相同数互为相同数,(a+b)n=(b+a)n (n是整数是整数)a+b a+b 与与 -a-b -a-b 互为相反数互为相反数.(-a-b)n=(a+b)n (n是偶数是偶数)(-a-b)n=-(a+b)n (n是奇数是奇数)练习一练习一1.在下列各式右边括号前添上适当的符号,使左边与右边相等.(1)a+2=_(2+a)(2)-x+2y=_(2y-x)(3)(m-a)2=_(a-m)2 (4)(a-b)3=_(-a+b)3(5)(x+y)(x-2y)=_(y+x)(2y-x)+-2.2.判断下列各式是否正确判断下列各式是否正确?(1)(y-x)2=-(x-y)2(2)(3+2x)3=-(2x+3)3(3)a-2b=-(-2b+a)(4)-a+b=-(a+b)(5)(a-b)(x-2y)=(b-a)(2y-x)否否否否否否否否对对例例1.1.把把 a(x-3)+2b(x-3)a(x-3)+2b(x-3)分解因式分解因式.解:解:a(x-3)+2b(x-3)a(x-3)+2b(x-3)=(x-3x-3)(a+2b)(a+2b)分析:多项式可看成分析:多项式可看成a(x-3)a(x-3)与与 2b(x-3)2b(x-3)两项。公因式为两项。公因式为x-3x-3例题解析例题解析例例2.2.把把a(x-y)+b(y-x)a(x-y)+b(y-x)分解因式分解因式.解:解:a(x-y)+b(y-x)a(x-y)+b(y-x)=a(x-y)=a(x-y)-b(b(x-yx-y)=(x-y)(a-b)=(x-y)(a-b)分析:多项式可看成a(x-y)与+b(y-x)两项。其中X-y与y-x互为相反数,可将+b(y-x)变为-b(x-y),则a(x-y)与-b(x-y)公因式为 x-y例例3.3.把把6(m-n)6(m-n)3 3-12(n-m)-12(n-m)2 2分解因式分解因式.解:解:6(m-n)6(m-n)3 3-12(n-m)-12(n-m)2 2 6(m-n)6(m-n)3 3-12(-12(m-nm-n)2 2 6(m-n)6(m-n)2 2(m-n-2)(m-n-2)分析:其中(m-n)与(n-m)互为相反数.可将-12(n-m)2变为-12(m-n)2,则6(m-n)3与-12(m-n)2 公因式为6(m-n)2例4.把6(x+y)(y-x)2-9(x-y)3分解因式.解:解:6(x+y)(y-x)2-9(x-y)3 =6(x+y)(x-y)2-9(x-y)3 =3(x-y)22(x+y)-3(x-y)=3(x-y)2(2x+2y-3x+3y)=3(x-y)2(-x+5y)=3(x-y)2(5y-x)=-3(x-y)2(x-5y)-(2)5x(a-b)2+10y(b-a)2)3(23)(6)(12mnnm-)1()xyb-)yx a-分解因式:分解因式:(4)a(a+b)(a-b)-a(a+b)2练习二练习二=a(x-y)+b(x-y)=(x-y)(a+b)=5x(a+b)2+10y(a-b)2=12(m-n)3-6(m-n)2=a(a+b)(a-b)-(a+b)=6(m-n)22(m-n)-1=6(m-n)2(2m-2n-1)=-2ab(a+b)=5(a+b)2(x+2y)分解因式:分解因式:(5)mn(m+n)-m(n+m)2(6)2(a-3)2-a+3(7)a(x-a)+b(a-x)-c(x-a)练习二练习二)8(32)(6)(2abba-=mn(m+n)-m(m+n)2=2(a-3)2-(a-3)=a(x-a)-b(x-a)-c(x-a)=2(a-b)2(1+3a-3b)=-m(m+n)n-(m+n)=2(a-3)2(a-3)-1=(a-3)(2a-7)=(x-a)(a-b-c)=2(a-b)2+6(a-b)3=2(a-b)21-3(a-b)=-m2(m+n)课堂小结 两个只有符号不同的多项式是否有关系,有如下判断方法:(1)当相同字母前的符号相同时,则两个多项式相等.如:a-b 和-b+a 即-b+a=a-b(2)当相同字母前的符号均相反时,则两个多项式互为相反数.如:a-b 和 b-a 即 a-b=-(a-b)此此课件下件下载可自行可自行编辑修改,修改,仅供参考!供参考!感感谢您的支持,我您的支持,我们努力做得更好!努力做得更好!谢谢!