欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    九年级全册数学教案.docx

    • 资源ID:8839546       资源大小:15.80KB        全文页数:6页
    • 资源格式: DOCX        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    九年级全册数学教案.docx

    九年级全册数学教案九年级全册数学教案1 配方法 教学内容 运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 教学目标 理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程. 重难点关键 1.重点:运用开平方法解形如(x+m)2=n(n0)的方程;领会降次转化的数学思想. 2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n0)的方程. 教学过程 一、复习引入 学生活动:请同学们完成下列各题 问题1.填空 (1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)2;(3)x2+px+_=(x+_)2. 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 . 问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探索新知 上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢? (学生分组讨论) 老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3 即2t+1=3,2t+1=-3 方程的两根为t1=1,t2=-2 例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1 分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. 解:(2)由已知,得:(x+3)2=2 直接开平方,得:x+3=± 即x+3=,x+3=- 所以,方程的两根x1=-3+,x2=-3- 例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率. 分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x, 则:10(1+x)2=14.4 (1+x)2=1.44 直接开平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2 所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%. (学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”. 三、巩固练习 教材 练习. 四、应用拓展 例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少? 分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2. 解:设该公司二、三月份营业额平均增长率为x. 那么1+(1+x)+(1+x)2=3.31 把(1+x)当成一个数,配方得: (1+x+)2=2.56,即(x+)2=2.56 x+=±1.6,即x+=1.6,x+=-1.6 方程的根为x1=10%,x2=-3.1 因为增长率为正数, 所以该公司二、三月份营业额平均增长率为10%. 五、归纳小结 本节课应掌握: 由应用直接开平方法解形如x2=p(p0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解 六、布置作业 1.教材 复习巩固1、2. 九年级全册数学教案2 二次根式的乘除法 教学目标 1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。 2、使学生掌握积的算术平方根的性质、会根据这一性质熟练地化简二次根式. 3、培养学生合情推理能力。 教学过程 一、复习提问 1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式? 2、二次根式有哪些性质?计算下列各题: ()2 二、提出问题,导入新知 1、试一试 计算: (1) _=( )=( ) =( )=( ) (2) _=( )=( ) =( )=( ) 提问:观察以上计算结果,你能发现什么? 2、思考 _与是否相等? 提问:(1)你将用什么方法计算? (2)通过计算,你发现了什么?是否与前面试一试的结果一样? 3、概括 让学生观察以上计算结果、归纳得出结论:_=(a0,b0) 注意,a,b必须都是非负数,上式才能成立。 三、举例应用 例1、计算。 _ 说明:二次根式运算的结果,应该尽量化简、如(2)结果不要写成,而应化简成4。 等式_=(a0,b0),也可以写成=_(a0,b0) 利用它可以进行二次根式的化简,例如:=_=a2 例2、化简 说明:(1)如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简;(2)在化简时,一般先将被开方数进行因式分解或因数分解,然后就将能开得尽方的因式(偶次方因式)或因数用它们的算术平方根代替,移到根号外,也就是开出方来。 四、课堂练习 1、计算下列各式,将所得结果化简: _ _ 2、P12页练习1(1)、(2)、2 五、想一想 1、_与是否相等?a、b、c有什么限制?请举一个例子加以说明。 2、等于_吗? 3、化简: 六、小结 这节课我们学习了以下知识: 1、二次根式的乘法运算法则,即_= (a0,b0) 2、积的算术平方根,等于积中各因式的算术平方根的积,即=_ (a0,b0) 要特别注意,以上(1)、(2)中,a、b必须都是非负数,如果a、b中出现了负数,等式就不成立、想一想,=_成立吗?为什么? 3、应用(1)、(2)进行计算和化简,在计算和化简中,复习了性质=a(a 0),加深了对非负数a的算术平方根的性质的认识 七、作业 习题22.2第2、(1),(2)题,第3、(1)、(2)题、第4题 九年级全册数学教案3 配方法的基本形式 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤. 重点 讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤. 难点 将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 一、复习引入 (学生活动)请同学们解下列方程: (1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7 老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得 x=±或mx+n=±(p0). 如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗? 二、探索新知 列出下面问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面前三个方程的解法呢? 问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少? (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征. 既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化: x2+6x-16=0移项x2+6x=16 两边加(6/2)2使左边配成x2+2bx+b2的形式x2+6x+32=16+9 左边写成平方形式(x+3)2=25降次x+3=±5即x+3=5或x+3=-5 解一次方程x1=2,x2=-8 可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m. 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1用配方法解下列关于x的方程: (1)x2-8x+1=0(2)x2-2x-21=0 三、巩固练习 教材第9页练习1,2.(1)(2). 四、课堂小结 本节课应掌握: 左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程. 五、作业 教材第17页复习巩固2,3.(1)(2). 九年级全册数学教案4 圆 经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念. 重点 经历形成圆的概念的过程,理解圆及其有关概念. 难点 理解圆的概念的形成过程和圆的集合性定义. 活动1创设情境,引出课题 1.多媒体展示生活中常见的给我们以圆的形象的物体. 2.提出问题:我们看到的物体给我们什么样的形象? 活动2动手操作,形成概念 在没有圆规的情况下,让学生用铅笔和细线画一个圆. 教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗?画的圆的位置和大小分别由什么决定? 教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定. 1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“O”,读作“圆O”. 2.小组讨论下面的两个问题: 问题1:圆上各点到定点(圆心O)的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点? 3.小组代表发言,教师点评总结,形成新概念. (1)圆上各点到定点(圆心O)的距离都等于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆上. 因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.) 活动3学以致用,巩固概念 1.教材第81页练习第1题. 2.教材第80页例1. 多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等. 活动4自学教材,辨析概念 1.自学教材第80页例1后面的内容,判断下列问题正确与否: (1)直径是弦,弦是直径;半圆是弧,弧是半圆. (2)圆上任意两点间的线段叫做弧. (3)在同圆中,半径相等,直径是半径的2倍. (4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.) (5)大于半圆的弧是劣弧,小于半圆的弧是优弧. 2.指出图中所有的弦和弧. 活动5达标检测,反馈新知 教材第81页练习第2,3题. 活动6课堂小结,作业布置 课堂小结 1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据. 2.证明几点在同一圆上的方法. 3.集合思想. 作业布置 1.以定点O为圆心,作半径等于2厘米的圆. 2.如图,在RtABC和RtABD中,C=90°,D=90°,点O是AB的中点. 求证:A,B,C,D四个点在以点O为圆心的同一圆上. 答案:1.略;2.证明OA=OB=OC=OD即可.

    注意事项

    本文(九年级全册数学教案.docx)为本站会员(战神)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开