欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    探索勾股定理(三)演示文稿.ppt

    • 资源ID:884090       资源大小:1.28MB        全文页数:22页
    • 资源格式: PPT        下载积分:1金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要1金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    探索勾股定理(三)演示文稿.ppt

    探索勾股定理,教师:成都石室联合中学 李颖,(第3课时),勾股定理证明方法汇总,课前自主探究活动,探究报告,具体的做法是: 请各个学习小组从网络或书籍上,尽可能多地寻找和了解验证勾股定理的方法.,验证过程的分析与欣赏,第一种类型:以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系;第二种类型:以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明;第三种类型:以刘徽的“青朱出入图”为代表,“无字证明”.,问题思考, 运用了哪些数学知识?, 体现了哪些数学思想方法?, 这种方法与其他方法比较,有什么共同点和不同点?,对某一验证方法,三种类型:,第一种类型:以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系。体现了以形证数、形数统一、代数和几何的紧密结合 .,第二种类型:以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明,反映了勾股定理的几何意义.,第三种类型:以刘徽的“青朱出入图”为代表,证明不需用任何数学符号和文字,更不需进行运算,隐含在图中的勾股定理便清晰地呈现,整个证明单靠移动几块图形而得出,被称为“无字证明”.,方法一:三国时期吴国数学家赵爽在为周髀算经作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明.,2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就.,第一种类型:,c,b a,方法二:美国第二十任总统伽菲尔德的证法,被称为“总统证法”.,如图,梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式,得化简,得,第一种类型:,据传是当年毕达哥拉斯发现勾股定理时做出的证明。,将4个全等的直角三角形拼成边长为(ab)的正方形ABCD,使中间留下边长c的一个正方形洞画出正方形ABCD移动三角形至图2所示的位置中,于是留下了边长分别为a与b的两个正方形洞则图1和图2中的白色部分面积必定相等,所以c2=a2+b2,图1,图2,方法三,第一种类型:,第二种类型:以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明,反映了勾股定理的几何意义。,如图,过 A 点画一直线 AL 使其垂直于 DE, 并交 DE 于 L,交 BC 于 M。通过证明BCFBDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与 矩形MLEC也等积,于是推得,第二种类型:以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明,反映了勾股定理的几何意义。,第三种类型:以刘徽的“青朱出入图”为代表,证明不需用任何数学符号和文字,更不需进行运算,隐含在图中的勾股定理便清晰地呈现,整个证明单靠移动几块图形而得出,被称为“无字证明”。,约公元 263 年,三国时代魏国的数学家刘徽为古籍九章算术作注释时,用“出入相补法”证明了勾股定理。,a,b,c,无字证明,第三种类型:以刘徽的“青朱出入图”为代表,证明不需用任何数学符号和文字,更不需进行运算,隐含在图中的勾股定理便清晰地呈现,整个证明单靠移动几块图形而得出,被称为“无字证明”。,做法是将一条垂直线和一条水平线,将较大直角边的正方形分成 4 分。之后依照图中的颜色,将两个直角边的正方形填入斜边正方形之中,便可完成定理的证明。,单击图片打开,第三种类型:在印度、在阿拉伯世界和欧洲出现的一种拼图证明,c,方法三:意大利文艺复兴时代的著名画家达·芬奇对勾股定理进行了研究。,第三种类型:,五巧板的制作,A,B,C,E,D,F,G,H,I,a,b,c,尝试拼图,验证勾股定理,这种证明方法从几何图形的面积变化入手,运用了数形结合的思想方法。,利用五巧板拼图验证勾股定理:,练习提升,2.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。,1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2,勾股定理的文化价值,(1) 勾股定理是联系数学中数与形的第一定理。,(2) 勾股定理反映了自然界基本规律,有文明的宇宙“人”都应该认识它,因而勾股定理图被建议作为与“外星人”联系的信号。,(3)勾股定理导致不可通约量的发现,引发第一次数学危机。,(4)勾股定理公式是第一个不定方程,为不定方程的解题程序树立了一个范式。,小结反思,我最大的收获;,我表现较好的方面;,我学会了哪些知识;,我还有哪些疑惑,学生反思:,(1)写数学日记并发挥你的聪明才智,去探索勾股定理、去研究勾股定理,你又有什么新的发现?(2)尝试利用意大利著名画家达·芬奇的方法验证勾股定理?, 课题拓展,

    注意事项

    本文(探索勾股定理(三)演示文稿.ppt)为本站会员(zn****k)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开