人教版高中数学必修课-几何概型-教学PPT课件.ppt
几何概型几何概型克州三中克州三中 刘鹏贤刘鹏贤古典概型古典概型:特点特点:(1)试验中所有可能出现的基本试验中所有可能出现的基本 事件只有事件只有有限个有限个.(2)每个基每个基本事件出现的本事件出现的可能性可能性 相等相等.返回返回引例 假设你购买一份快递,送快递人可能在早上6:307:30之间把快递送到你宿舍,你离开宿舍去上课的时间在早上7:008:00之间,问你在离开宿舍前能得到快递(称为事件A)的概率是多少?能否用古典概型的公式来求解?事件A包含的基本事件有多少?为什么要学习几何概型为什么要学习几何概型?问题:图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?事实上,甲获胜的概率与字母B所在扇形区域的圆弧的长度有关,而与字母B所在区域的位置无关.因为转转盘时,指针指向圆弧上哪一点都是等可能的.不管这些区域是相邻,还是不相邻,甲获胜的概率是不变的.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.在几何概型中在几何概型中,事件事件A A的概率的计算公式如下的概率的计算公式如下:解:设A=等待的时间不多于10分钟.我们所关心的事件A恰好是打开收音机的时刻位于50,60时间段内,因此由几何概型的求概率的公式得即“等待的时间不超过10分钟”的概率为例1 某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.1.有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.2.如右下图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率.练习练习:3.一张方桌的图案如图所示。将一颗豆子随机地扔到桌面上,假设豆子不落在线上,求下列事件的概率:(1)豆子落在红色区域;(2)豆子落在黄色区域;(3)豆子落在绿色区域;(4)豆子落在红色或绿色区域;(5)豆子落在黄色或绿色区域。4.取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于1米的概率有多大?例例2 2 假设你家订了一份报纸假设你家订了一份报纸,送报人可能在早送报人可能在早上上6:306:307:307:30之间把报纸送到你家之间把报纸送到你家,你父亲你父亲离开家去工作的时间在早上离开家去工作的时间在早上7:007:008:008:00之间之间,问你父亲在离开家前能得到报纸问你父亲在离开家前能得到报纸(称为事件称为事件A)A)的概率是多少的概率是多少?解解:以横坐标以横坐标X表示报纸送到时间表示报纸送到时间,以纵坐标以纵坐标Y表示父亲离家时间建立平面直角坐标表示父亲离家时间建立平面直角坐标系系,假设随机试验落在方形区域内任何一假设随机试验落在方形区域内任何一点是等可能的点是等可能的,所以符合几何概型的条件所以符合几何概型的条件.根据题意根据题意,只要点落到阴影部只要点落到阴影部分分,就表示父亲在离开家前能就表示父亲在离开家前能得到报纸得到报纸,即时间即时间A发生发生,所以所以对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解.思考题甲乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,到时即可离去,求两人能会面的概率.1.在 点P在线段AB上(1)求 的概率(2)求 的概率练习:2.在边长为2的正三角形ABC内任取一点P,求使点P到三个顶点的距离至少有一个小于1的概率。3.已知函数f(x)=-x2+ax-b(1)若a、b都是从0、1、2、3、4五个数中任取的一个数,求上述函数有零点的概率;(2)若a、b都是从区间0,4任取的一个数,求f(1)0成立时的概率。课堂小结1.几何概型的特点.2.几何概型的概率公式.