同济六版高等数学第四章第二节.ppt
4.2 换元积分法一、第一类换元法二、第二类换元法上页下页铃结束返回首页上页下页铃结束返回首页积分表第二类换元法第二类换元法第一类换元法第一类换元法基本思路基本思路 设可导,则有上页下页铃结束返回首页积分表一、第一类换元法下页v定理1(换元积分公式)设f(u)具有原函数 且uj(x)可导 则有换元公式(也称配元法配元法,凑微分法凑微分法)上页下页铃结束返回首页积分表下页一、第一类换元法v定理1(换元积分公式)设f(u)具有原函数 且uj(x)可导 则有换元公式 设f(u)具有原函数F(u)则 v换元积分过程 上页下页铃结束返回首页积分表 例1 例2 例3 下页上页下页铃结束返回首页积分表 例4 例5 积分公式:下页上页下页铃结束返回首页积分表 例6 积分公式:例7 当a0时,下页上页下页铃结束返回首页积分表 例8 积分公式:下页上页下页铃结束返回首页积分表 例9 例10 下页上页下页铃结束返回首页积分表含三角函数的积分:例11 例12 下页上页下页铃结束返回首页积分表 例13 例14 下页上页下页铃结束返回首页积分表 例15 例16 积分公式:下页上页下页铃结束返回首页积分表 例17 ln|sec xtan x|C 积分公式:首页上页下页铃结束返回首页积分表常用的几种配元形式常用的几种配元形式:万能凑幂法上页下页铃结束返回首页积分表思考与练习思考与练习1.下列各题求积方法有何不同?上页下页铃结束返回首页积分表2.求提示提示:法法1法法2法法3上页下页铃结束返回首页积分表二、第二类换元法v定理2 设xj(t)是单调的、可导的函数 并且j(t)0 又设f j(t)j(t)具有原函数F(t)则有换元公式其中tj1(x)是xj(t)的反函数 这是因为 由复合函数和反函数求导法则 下页上页下页铃结束返回首页积分表v常用的变换 下页上页下页铃结束返回首页积分表 例19 解 下页注 进行变换和逆变换均要根据此图 积分表上页下页铃结束返回首页积分表 例20 解:(C1Clna)下页积分表上页下页铃结束返回首页积分表 例21 解 当xa 时(C1Clna)下页积分表上页下页铃结束返回首页积分表当xa 时(C1Clna)积分表上页下页铃结束返回首页积分表原式例22 求解解:令则原式当 x 0 时,类似可得同样结果.倒代换上页下页铃结束返回首页积分表v补充积分公式 结束积分表上页下页铃结束返回首页积分表小结小结:1.第二类换元法常见类型第二类换元法常见类型:令令令或令令第四节讲上页下页铃结束返回首页积分表(7)分母中因子次数较高时,可试用倒代换倒代换 令上页下页铃结束返回首页积分表思考与练习思考与练习1.下列积分应如何换元才使积分简便?令令令上页下页铃结束返回首页积分表作业作业P2042 (4),(6),(15),(19),(23),(37),(40),(41),(43)