几何中的应用修改.ppt
第六节第六节复习 目录 上页 下页 返回 结束 一、空间曲线的切线与法平面一、空间曲线的切线与法平面二、曲面的切平面与法线二、曲面的切平面与法线 多元函数微分学的几何应用 第七章 复习:平面曲线的切线与法线平面曲线的切线与法线已知平面光滑曲线切线方程法线方程若平面光滑曲线方程为故在点切线方程法线方程在点有有因 机动 目录 上页 下页 返回 结束 一、一、空间曲线的切线与法平面过点 M 与切线垂直的平面称为曲线在该点的法法机动 目录 上页 下页 返回 结束 位置.空间光滑曲线在点 M 处的切线切线为此点处割线的极限平面平面.点击图中任意点动画开始或暂停1.1.曲线方程为参数方程的情况曲线方程为参数方程的情况切线方程切线方程机动 目录 上页 下页 返回 结束 此处要求也是法平面的法向量,切线的方向向量:称为曲线的切向量切向量.如个别为0,则理解为分子为 0.机动 目录 上页 下页 返回 结束 不全为0,因此得法平面方程法平面方程 例例1.1.求圆柱螺旋线 对应点处的切线方程和法平面方程.切线方程法平面方程即即解解:由于对应的切向量为在机动 目录 上页 下页 返回 结束,故2.2.曲线为一般式的情况曲线为一般式的情况光滑曲线机动 目录 上页 下页 返回 结束 则在点切线方程切线方程法平面方程法平面方程有注:上述公式可用后面的曲面的法注:上述公式可用后面的曲面的法向量的向量积来解析。向量的向量积来解析。例例2.2.求曲线求曲线求曲线求曲线在点M(1,2,1)处的切线方程与法平面方程.机动 目录 上页 下页 返回 结束 解解.方程组两边对 x 求导,得曲线在点 M(1,2,1)处有:切向量解得(分析:将此曲线看成(化成)参数为(分析:将此曲线看成(化成)参数为x的参数方程。)的参数方程。)切线方程即法平面方程即点 M(1,2,1)处的切向量机动 目录 上页 下页 返回 结束 二、二、曲面的切平面与法线 设 有光滑曲面通过其上定点对应点 M,切线方程为不全为0.则 在且点 M 的切向量切向量为任意引一条光滑曲线下面证明:此平面称为 在该点的切平面切平面.机动 目录 上页 下页 返回 结束 上过点 M 的任何曲线在该点的切线都在同一平面上.证证证证:机动 目录 上页 下页 返回 结束 在 上,得令由于曲线 的任意性,表明这些切线都在以为法向量的平面上,从而切平面存在.曲面 在点 M 的法向量法向量法线方程法线方程切平面方程切平面方程复习 目录 上页 下页 返回 结束 曲面时,则在点故当函数 法线方程法线方程令特别特别,当光滑曲面当光滑曲面当光滑曲面当光滑曲面 的方程为显式的方程为显式的方程为显式的方程为显式 在点有连续偏导数时,切平面方程切平面方程机动 目录 上页 下页 返回 结束 法向量法向量用将法向量的法向量的方向余弦:方向余弦:表示法向量的方向角,并假定法向量方向分别记为则向上,复习 目录 上页 下页 返回 结束 例例3.3.求球面求球面求球面求球面在点(1,2,3)处的切平面及法线方程.解解:所以球面在点(1,2,3)处有:切平面方程切平面方程 即法线方程法线方程法向量令机动 目录 上页 下页 返回 结束 例例4.4.求曲线求曲线求曲线求曲线在点(1,1,1)的切线解解:点(1,1,1)处两曲面的法向量为因此切线的方向向量为由此得切线:法平面:即与法平面.机动 目录 上页 下页 返回 结束 注意与例注意与例2解法的比较!解法的比较!1.1.空间曲线的切线与法平面空间曲线的切线与法平面 切线方程法平面方程1)参数式情况.空间光滑曲线切向量内容小结机动 目录 上页 下页 返回 结束 切线方程法平面方程空间光滑曲线切向量2)2)一般式情况一般式情况一般式情况一般式情况.机动 目录 上页 下页 返回 结束 空间光滑曲面曲面 在点法线方程法线方程1)隐式情况.的法向量法向量切平面方程切平面方程2.2.曲面的切平面与法线曲面的切平面与法线机动 目录 上页 下页 返回 结束 空间光滑曲面切平面方程切平面方程法线方程法线方程2)2)显式情况显式情况显式情况显式情况.法线的方向余弦方向余弦法向量法向量机动 目录 上页 下页 返回 结束 作业作业 习题习题7-61(2)(4),2,3(1),4第二节 目录 上页 下页 返回 结束