中考数学总复习第04讲整式难点解析与训练.doc
第04讲 整式考点·方法·破译1掌握单项式及单项式的系数、次数的概念.2掌握多项式及多项式的项、常数项及次数等概念.3掌握整式的概念,会判断一个代数式是否为整式.4了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析 【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】 理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:不是,因为代数式中出现了加法运算;不是,因为代数式是与x的商;是,它的系数为,次数为2;是,它的系数为,次数为3.【变式题组】01判断下列代数式是否是单项式 02说出下列单项式的系数与次数【例】 如果与都是关于x、y的六次单项式,且系数相等,求m、n的值.【解法指导】 单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01一个含有x、y的五次单项式,x的指数为3.且当x2,y1时,这个单项式的值为32,求这个单项式.02(毕节)写出含有字母x、y的五次单项式_.【例】 已知多项式 这个多项式是几次几项式? 这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】 n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:这个多项式是七次四项式;(2)最高次项是,二次项系数为1,常数项是1.【变式题组】01指出下列多项式的项和次数 (2)02指出下列多项式的二次项、二次项系数和常数项 (2)【例】 多项式是关于x的三次三项式,并且一次项系数为7.求m+nk的值【解法指导】 多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m3,而一次项系数为7,即(3n+1)7,故n2.已有三次项为,一次项为7x,常数项为5,又原多项式为三次三项式,故二次项的系数k0,故m+nk3+205.【变式题组】01多项式是四次三项式,则m的值为( )A2 B2 C±2 D±102已知关于x、y的多项式不含二次项,求5a8b的值.03已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例】 已知代数式的值是8,求的值.【解法指导】 由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01(贵州)如果代数式2a+3b+8的值为18,那么代数式9b6a+2的值等于( )A28 B28 C32 D3202(同山)若,则的值为_.03(潍坊)代数式的值为9,则的值为_.【例】 证明代数式的值与m的取值无关.【解法指导】 欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式无论m的值为何,原式值都为4.原式的值与m的取值无关.【变式题组】01已知,且的值与x无关,求a的值.02若代数式的值与字母x的取值无关,求a、b的值.【例】 (北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有( )个A4 B12 C15 D25【解法指导】 首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z7.当x1时,y1,2,3,4,5,z5,4,3,2,1.当x2时,y1,2,3,4,z4,3,2,1. 当x3时,y1,2,3,z3,2,1.当 x4时,y1,2,z2,1.当 x5时,yz1.所以所求的单项式的个数为5+4+3+2+115,故选C【变式题组】01已知m、n是自然数,是八次三项式,求m、n值.02整数n_时,多项式是三次三项式.演练巩固·反馈提高01下列说法正确的是( )A是单项式 B的次数为5 C单项式系数为0 D是四次二项式02a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是( )A100b+a B10a+b Ca+b D100a+b03若多项式的值为1,则多项式的值是( )A2 B17 C7 D704随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m元后,又降低20%,那么该电脑的现售价为( )A B C D05若多项式是关于x的一次多项式,则k的值是( )A0 B1 C0或1 D不能确定06若是关于x、y的五次单项式,则它的系数是_.07电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_个座位.08若,则代数式xy+mn值为_.09一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是_.10(河北)有一串单项式 (1)请你写出第100个单项式; 请你写出第n个单项式.11(安徽)一个含有x、y的五次单项式,x的指数为3,且当x2,y1时,这个单项式值为32,求这个单项式.12(天津)已知x3时多项式的值为1,则当x3时这个多项式的值为多少?13若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求ab的值.14某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为( )A2007 B2 C D102(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是( ) A B C D03已知,那么在代数式中,对任意的a、b,对应的代数式的值最大的是( )A B C D04在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n米长的铁丝,则m与n大小关系( )Amn Bmn Cmn D不能确定05(广安)已知_.06某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a元,租期超过3天,从第4天开始每天另加收b元,如果租看1本书7天归还,那么租金为_元.07已知_.08有理数a、b、c在数轴上的位置如图所示,化简后的结果是_.09已知_.10(全国初中数学竞赛)设a、b、c的平均数为M,a、b的平均数为N,又N、c的平均数为P,若abc,则M与P大小关系_.11(资阳)如图,对面积为1的ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B2AB,B1C2BC,C1A2CA,顺次连接A1,B1,C1,得到A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B12A1B1,B2C12B1C1,C2A12C1A1,顺次连接A2,B2,C2,得到A2B2C2,记其面积为S2;按此规律继续下去,可得到A5B5C5,则其面积S5_19512(安徽)探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S2;当n3时,钉子板上所连不同线段的长度值只有1,2,2五种,比n2时增加了3种,即S2+35.(1) 观察图形,填写下表:钉子数(n×n)S值2×223×32+34×423( )5×5( )n=2n=3n=4n=5(2) 写出(n1)×(n1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)(3)对n×n的钉子板,写出用n表示S的代数式.13(青岛)提出问题:如图,在四边形ABCD中,P是AD边上任意一点,PBC与ABC和DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:当APAD时(如图):APAD,ABP和ABD的高相等,SABPSABD PDADAPAD,CDP和CDA的高相等,SCDPSCDA SPBC S四边形ABCDSABPSCDPS四边形ABCDSABDSCDAS四边形ABCD(S四边形ABCDSDBC)(S四边形ABCDSABC)SDBCSABC 当APAD时,探求SPBC与SABC和SDBC之间的关系,写出求解过程;当APAD时,SPBC与SABC和SDBC之间的关系式为:_;一般地,当APAD(n表示正整数)时,探求SPBC与SABC和SDBC之间的关系,写出求解过程;问题解决:当APAD(01)时,SPBC与SABC和SDBC之间的关系式为:_