最新大学高等数学经典课件8-3PPT课件.ppt
大学高等数学经典课件大学高等数学经典课件8-38-3 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 对于二元函数,我们用一个例子来说明例1 用钢板制造一个园柱形无盖容器,该容器底面的内半径为2米,内侧面高为5米,侧壁厚为1厘米,底厚为1.5厘米,试计算所用钢的重量.高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系这表示函数在(0,0)点存在两个偏导数但在(0,0)处不可微.因为如果z在(0,0)处可微,则必有它不是的高阶无穷小,因为当点p(x,y)沿着x=y直线趋向(0,0)有 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 在点(0,0)处的两个偏导数存在,且fx(0,0)=0,fy(0,0)=0.但函数在(0,0)处不连续,因此是不可微分的,从而全微分不存在.尽管这时能形式地写出但它与z之差并不是高阶无穷小.因而偏导数存在 只是全微分存在的必要条件.但是,如果再假定函数的各个偏导数连续,则全微分一定存在.有下面定理.定理定理2 如果函数z=f(x,y)的偏导数在点(x,y)处连续,则函数在该点可微.(全微分的充分条件全微分的充分条件)高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 在第一方括号内的表达式,由于y+y不变,因而可看作是x的一元函数f(x,y+y)的增量,于是应用拉格朗日中值定理,得到证明:因为我们只限于讨论在某一区域内有定义的函数(对于偏导数也同样),所以假定偏导数在点(x,y)连续,就含有偏导数在该点的某一邻域内必然存在的意思(以后凡说到偏导数在某一点连续都是这样理解).设点(x+x,y+y)为这邻域内任意一点,考察函数的全增量 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系又依假设,fx(x,y)在点(x,y)连续,所以上式可写成其中1为x,y的函数,且当x0,y0时,10 同理可证明第二个方括号内的表达式可写成其中2为y的函数,且当y0时,20 由(4),(5)式可见,在偏导数连续的假定下,全增量z表示为容易看出 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 它是随着(x,y)(0,0)即 0而趋于零的.这就证明了z=f(x,y)在点(x,y)是可微分的 以上关于二元函数全微分的定义及可微分的必要条件和充分条件可以完全类似地推广到三元和三元以上的多元函数.习惯上,我们把自变量的增量x,y分别记为dx,dy,并称为自变量x,y的微分,这样函数z=f(x,y)的全微分可写成 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 通常我们把二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理.而叠加原理也适合于三元以上的函数.例例2 求函数z=xsin(x+y)的全微分.解:高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系例例3 求z=x2y2+xy3-2y4.在点(3,1)处的全微分.例例4 求函数u=cos(x+y)+exz的全微分.解:高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系这几个函数的全微分并不难求,可作为公式记忆,在以后的微分方程中给我们带来方便.高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 二元函数的极限,连续,偏导数和可微,它们之间的关系是:二二.全微分在近似计算上的应用全微分在近似计算上的应用 由上面讨论知道,可微函数z=f(x,y)的全增量可以表示为解题步骤是:(1)选函数 (2)选(x0,y0)(3)代入上面公式计算 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系例例6 用全微分计算例1中园柱形容器所用钢的重量的近似值.解:高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系例7 已知圆柱体的高与底半径的相对误差分别为h 与R,求其体积的相对误差V解:在工程上,常常需要分析误差,其思路就是利用微分的近似计算结束语结束语谢谢大家聆听!谢谢大家聆听!20