欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中一年级数学必修一知识点.docx

    • 资源ID:88877387       资源大小:16.48KB        全文页数:8页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中一年级数学必修一知识点.docx

    高中一年级数学必修一知识点 学习任何一门课程都要学会对该科目学问点进展总结,这样可以检查我们对学问的真正把握程度,然而只有对一门课程有了较全面的把握后才能做出比拟全面的总结。下面给大家带来高中一年级数学必修一学问点,盼望对你们有所帮忙。 高中一年级数学必修一学问点 课时一:集合有关概念 1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能推断一个给定的东西是否属于这个整体。 2、一般的讨论对象统称为元素,一些元素组成的总体叫集合,简称为集。 3、集合的中元素的三个特性: (1)元素确实定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 例:世界上最高的山、中国古代四大美女、教室里面全部的人 (2)元素的互异性:一个给定集合中的元素是唯一的,不行重复的。 例:由HAPPY的字母组成的集合H,A,P,Y (3)元素的无序性:集合中元素的位置是可以转变的,并且转变位置不影响集合 例:a,b,c和a,c,b是表示同一个集合 4、集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用大写字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来a,b,c 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 x?R|x-32,x|x-32 语言描述法:例:不是直角三角形的三角形 Venn图:画出一条封闭的曲线,曲线里面表示集合。 5、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:x|x2=-5 6、元素与集合的关系: (1)元素在集合里,则元素属于集合 (2)元素不在集合里,则元素不属于集合 课时二、集合间的根本关系 1.“包含”关系子集 (1)定义:假如集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。 (2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A。 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素一样则两集合相等” 即:任何一个集合是它本身的子集。 真子集:假如A?B,且A?B那就说集合A是集合B的真子集 假如A?B,B?C,那么A?C 假如A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集 课时四:函数的有关概念 1、函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,记作:y=f(x),xA. (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域. 2、函数的三要素:定义域、值域、对应法则 3、函数的表示方法: (1)解析法:明确函数的定义域 (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。 (3)列表法:选取的自变量要有代表性,可以反响定义域的特征。 4、函数图象学问归纳 (1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. (2)画法 A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换。 (3)函数图像变换的特点: 1)函数y=f(x)关于X轴对称y=-f(x) 2)函数y=f(x)关于Y轴对称y=f(-x) 3)函数y=f(x)关于原点对称y=-f(-x) 课时五:函数的解析表达式,及函数定义域的求法 1、函数解析式子的求法 (1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)、求函数的解析式的主要方法有: 1)代入法: 2)待定系数法: 3)换元法: 4)拼凑法: 2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必需大于零; (4)指数、对数式的底必需大于零且不等于1. (5)假如函数是由一些根本函数通过四则运算结合而成的.那么,它的定义域是使各局部都有意义的x的值组成的集合. (6)指数为零底不行以等于零, (7)实际问题中的函数的定义域还要保证明际问题有意义. 3、一样函数的推断方法:表达式一样(与表示自变量和函数值的字母无关);定义域全都(两点必需同时具备) 4、区间的概念: (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示 课时六: 1.值域:先考虑其定义域 (1)观看法:直接观看函数的图像或函数的解析式来求函数的值域; (2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。 (3)配方法:针对二次函数的类型,依据二次函数图像的性质来确定函数的值域,留意定义域的范围。 (4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。 课时七: 1.分段函数 (1)在定义域的不同局部上有不同的解析表达式的函数。 (2)各局部的自变量的取值状况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 假如y=f(u)(uM),u=g(x)(xA),则y=fg(x)=F(x)(xA)称为f、g的复合函数。 (4)常用的分段函数 1)取整函数: 2)符号函数: 3)含肯定值的函数: 2.映射 一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)” 对于映射f:AB来说,则应满意: (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中对应的象可以是同一个; (3)不要求集合B中的每一个元素在集合A中都有原象。 留意:映射是针对自然界中的全部事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不肯定的函数。 课时八、函数的单调性(局部性质)及最值 1、增减函数 2、图象的特点 假如函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. 3、函数单调区间与单调性的判定方法 (A)定义法: 任取x1,x2D,且x1 作差f(x1)-f(x2); 变形(通常是因式分解和配方); 定号(即推断差f(x1)-f(x2)的正负); 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性亲密相关,其规律:“同增异减”。

    注意事项

    本文(高中一年级数学必修一知识点.docx)为本站会员(彩**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开