考研高等数学全面复习资料.pdf
高等数学考研复习资料,最全篇,适合于一遍,二遍复习研究细节,祝你考研数学春风得意马,突 破130分大关!目 录一、函数与极限.21、集合的概念.22、常量与变量.32、函数.43、函数的简单性态.44、反函数.55、复合函数.66、初等函数.67、双曲函数及反双曲函数.78、数列的极限.89、函数的极限.910、函数极限的运算规则.1 1一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比 如“身材较高的人”不能构成集合,因为它的元素不是确定的。我们通常用大字拉丁字母A、B、C、表示集合,用小写拉丁字母a、b、c 表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a A,否则就说a不属于A,记作:a A。(1)、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N(2)、所有正整数组成的集合叫做正整数集。记作N+或N-(3)、全体整数组成的集合叫做整数集。记作Z。(4)、全体有理数组成的集合叫做有理数集。记作Q。(5)、全体实数组成的集合叫做实数集。记作R。集合的表示方法(D、列举法:把集合的元素一洌举出来,并 用“”括起来表示集合(2)、描述法:用集合所有元素的共同特征来表示集合。集合间的基本关系。)、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A O B (或B皂A)。相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B(3)、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。(4)、空集:我们把不含任何元素的集合叫做空集。记 作0,并规定,空集是任何集合的子集。(5)、由上述集合之间的基本关系,可以得到下面的结论:、任何一个集合是它本身的子集。即A C A、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。集合的基本运算(D、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作AUB(在求并集时,它们的公共元素在并集中只能出现次。)即 A U B=x|x C A,或 x C B。(2)、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记 作A即 A C B=x|x C A,且 x C B。、补集:全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作CuA。即 C u A=x|xe U,且 x eA。集合中元素的个数(1)、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。、用c a r d来表示有限集中元素的个数。例如A=a,b,c),则c a r d(A)=3。(3)、般地,对任意两个集合A、B,有c a r d(A)+c a r d(B)=c a r d(A U B)+c a r d(A f l B)我的问题:1、学校里开运动会,设 人=M x是参加一百米跑的同学 ,B=x|x是参加二百米跑的同学 ,C=M x是参加四百米跑的同学)。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。、A U B:、A C B。2、在平面直角坐标系中,集合C=(%y)|y=x 表示直线丫=乂,从这个角度看,集合D=(x y)|方程组:2 x-y=l,x+4 y=5 表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。3已知集合A=x|l W x W 3 ,B=x(x-l)(x-a尸0。试判断B是不是A的子集?是否存在实数a使A=B成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合人=(1,2,3,4,n,),B=2,4,6,8,,2 n,),你能设计一种比较这两个集合中元素个数多少的方法吗?2、常量与变量(1)、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。(2)、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a W x W ba,b a,b_ I_|a b x开区间a x b(a,b)_ i _ 3&b 半开区间a V x W b 或 a W x V b(a,b 或a,b)3,b _ A _ J W b xa,b)-!a-b x以上我们所述的都是有限区间,除此之外,还有无限区间:a,+8):表示不小于a的实数的全体,也可记为:aWxV+8;(-8,b):表示小于b的实数的全体,也可记为:-8 xV b;(-8,+o o).表示全体实数,也可记为:-8 X 0.满足不等式|x-a|)的函数值的全部或部分在丁(“)的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数丁=/&)及 =。)复合而成的函数,简称复合函数,记作丁=7 1。,其 中 u叫做中间变量。注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。例题:函数丁=c s m 与函数”=2+x2是不能复合成一个函数的。因为对于=2 +工2 的定义域(-8,+8)中的任何X值所对应的U 值(都大于或等于2),使y =3 rcs in u都没有定义。6、初等函数(1)、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、鼎函数、三角函数及反三角函数。卜面我们用表格来把它们总结一下:函数名称函数的记号函数的图形函数的性质指数函数了 二以(40,a w l)1roa):不论x为何值,y总为正数;b):当 x=0 时,y=L对数函数y =l o g a X(a0,a w l)1.y =l o gaz/1 广/7=l o g 1 Xa):其图形总位于y 轴右侧,并过(1,0)点b):当a l 时,在区间(0,1)的值为负;在区间(一,+8)的值为正;在定义域内单调增.(2)、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.塞函数y=X a为任意实数J1这里只My y=x61 尸x叽出部分函数图形的一部分。令 a=m/na):当m为偶数n为奇数时,y是偶函数;b):a m,n都是奇数时,y是奇函数;c):当m奇n偶时,y在(-8,0)无意义.二角函数y=sin x(正弦函数)这里只写出了正弦函数二三4r y=sin x去a):正弦函数是以2 n为周期的周期函数b):正弦函数是奇函数且卜小H 1反角函数y=arcsin x(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在 F /2,TT/2,并称其为反正弦函数的主值.例题:y=2侬+ln/4 +3 +sin 8力是初等函数。7、双曲函数及反双曲函数(1)、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)双曲函数也有和差公式:双曲函数的性质三角函数的性质shO=O,cAO=1,tkO=0sin 0=O,cos 0=l,tan 0=0s hx与t hx是奇函数,chx是偶函数s inx与t a nx是奇函数,co s x是偶函数ch2x-s h2x-1sin 2 x+cos2 x=1它们都不是周期函数都是周期函数s/(x y)=shxchychxshych(x y)-chxchy+shxshy纺(x y)thxthy1 thxthy(2)、反双曲函数:双曲函数的反函数称为反双曲函数.石亚曲下坊说为 arshx=ln(x+Jx*+1)江中二/()a):反双曲正弦函数、v 其定乂域为:(-8,+8);b):反 双 曲 余 弦 函 数arc、*=ln(x+-1)其定义域为:口,+8);,1.1+xartnx=-I n-C):反双曲正切函数 2 1-x 其定义域为:(-1,+1);8、数列的极限我们先来回忆一下初等数学中学习的数列的概念。、数列:若按照一定的法则,有第一个数&,第二个数也,依次排列下去,使得任何一个正整数n对应着一个确定的数a.,那末,我们称这列有次序的数a“&,,务,为数列.数列中的每一个数叫做数列的项。第n项 为叫做数列的一般项或通项.注:我们也可以把数列4看作自变量为正整数n的函数,即:a 0=,8),它的定义域是全体正整数(2)、极限:极限的概念是求实际问题的精确解答而产生的。例:我们可通过作圆的内接正多边形,近似求出圆的面积。设有一圆,首先作圆内接正六边形,把它的面积记为由:再作圆的内接正十二边形,其面积记为A?;再作圆的内接正二十四边形,其面积记为A*依次循下去(一般把内接正6义2向边形的面积记为A J可得一系列内接正多边形的面积:A.,A?,A,,A n,,它们就构成一列有序数列。我们可以发现,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列A1,A2,A3,,An,当8 (读作。趋近于无穷大)的极限。汴:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。、数列的极限:一般地,对于数歹/I M 4 来说,若存在任意给定的正数 (不论其多么小),总存在正整数N,使得对于nN时的以X*不等式上一“都 成 立,那末就称常数a是数列*的极限,或者称数列X*收敛于a .加 蚓(-0 0)记作:X T 9 或3 8 /泞:此定义中的正数 只有任意给定,不等式上一 区 才能表达出X与a无限接近的意思。且定义中的正整数N与任意给定的正数 是有关的,它是随着 的给定而选定的。(4)、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列 a极限为a的一个几何解释:将常数a及数列 2,/,”在数轴上用它们的对应点表示出来,再在数轴上作点a的 邻域即开区间(a-,a+),如下图所示:a-一a -a+1询 XN+1、N+3 阳+2 x2 x3 X因不等式k*一区 与不等式0/N时,所有的点X*都落在开区间(a-E ,a+e )内,而只有有限个(至多只有N个)在此区间以外。注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。(5)、数列的有界性:对于数列/,若存在着正数M,使得切 a都满足不等式|WM,则称数列X*是有界的,若正数M不存在,则可说数列X*是无界的。定理:若数列X*收敛,那末数列x*定有界。泞:有界的数列不定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数 列1,-1,1,-1,(-1),-是有界的,但它是发散的。9,函数的极限前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取1-8内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.函数的极值有两种情况:a):自变量无限增大:b):自变量无限接近某一定点x。,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢?下而我们结合着数列的极限来学习一下函数极限的概念!(1)、函数的极限(分两种情况)a):自变量趋向无穷大时函数的极限定义:设函数A=/(X),若对于任意给定的正数 (不论其多么小),总存在着正数X,使得对于适合不等式k A 的一切x,所对应的函数值,(X)都满足不等式|小)_即 那末常数A就叫做函数y=,(力 当x-8时的极限,记作:N X下面我们用表格把函数的极限与数列的极限对比一下:数列的极限的定义函数的极限的定义存在数列0 与常数A,任给一正数 0,总可找到一正整数N,对于n N 的所有“都满足L 一 划 vs则称数列a*,当X-8时收敛于A记:l i m%/。存在函数丁=/()与常数A,任给一正数 o,总可找到一正数x,对于适合k的一切 x,都满足火,函数丁=/(X)当X-8时的极限为A,记:l i m /(x)=418 o-1-111-0 A*-AV、0 从上表我们发现了什么?试思考之b):自变量趋向有限值时函数的极限。我们先来看一个例子./(x)=0J _ 1例:函数 升-1 ,当X 1 时函数值的变化趋势如何?函数在X=1 处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把X-1 时函数值的变化趋势用表列出,如下图:x l-0 9 0.99 0.999-1 001 1.01 1.1 W-1 9 1 99 1 999 Pl 2 001 2.01 2.1 从中我们可以看出x-1时,(X)-2.而且只要x与1有多接近,,(X)就与2有多接近.或说:只要 *)与2只差一个微量 ,就一定可以找到一个6 ,当卜7 5时满足/-2|b定义:设函数,(X)在某点X。的某个去心邻域内有定义,且存在数A,如果对任意给定的 (不论其多么小),总存在正数6,当0上一,16时,()一 10;b):写出不等式|/。)一 1 ;C):解不等式能否得出去心邻域0卜一,1 0,总能找出6 ,当0卜一,15时,()一 1成立,因此lim/(x)=A1 0、函数极限的运算规则前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则与数列极限的运算规则相似。(1)、函数极限的运算规则若己知 X-X。(或 X f 8)时,/(x)-A g(x)lim C/(x)g(x)=A B lim/(x)-g(x)=A B则:XTXQlim =W,(8 w0)g(x)Bl i m上/(x)=A 4以 为常数)卜 为 正 整 数)推论:*T M X T%在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。r+x 1lim-r-5-例题:求z i 4 x +x -x +31 ml3/+一=鸣 3 x?+吧7-欧=3+一=3K T】4x,+/-x +3 lim 4x?+1 1m 7 一hm x +lim 3 4+1 -1 +3 7解答:K TI X TI N TI X TI3炉-4/+2I nn ;-:例题:求 07/+5 x?-3此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。解答:注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。函数极限的存在准则学习函数极限的存在准则之前.,我们先来学习下左、右的概念。我们先来看个例子:sgn例:符号函数为-l,x 0=0对于这个分段函数,X从左趋于0和从右趋于0时函数极限是不相同的.为此我们定义了左、右极限的概念。定义:如 果X仅从左侧(x x)趋近x j时,函数/(X)与常量A无限接近,则称A为函数,(X)当X T 君时lim+/(x)=A的右极限.记:1M%注:只有当X-X。时,函数,(X)的左、右极限存在且相等,方 称,(X)在X f a时有极限函数极限的存在准则准 则 r 对于点x 0 的某邻域内的切x,x 0 点本身可以除外(或绝对值大于某正数的切x)有g)wx)J(x),且 照g,螃J”lim/(x)那 末 I 存在,且等于A注:此准则也就是夹逼准则.准 则:单调有界的函数必有极限.注:有极限的函数不定单调有界两个重要的极限lim(1 +1)*=e注:其中e 为无理数,它的值为:e=2.7 1 8 2 8 1 8 2 8 4 5 90 4 5s i n x-h m -=1T0 x注:在此我们对这两个重要极限不加以证明.注:我们要牢记这两个重要极限,在今后的解题中会经常用到它们.2l i m G-)*例题:求“T 9 XXt-解答:令 2 ,则 x=-2 t,因为X 8,故 t 8,2 1 1 1l i m (1 食x =l i m (1 +3 口=l i m (1 +与一加=l i m (1 +则“T 9 X XT9 l I 1 9 t“主:解此类型的题时,一定要注意代换后的变量的趋向情况,象 X-8时,若用t 代换1/X,则 1-0.无穷大量和无穷小量无穷大量我们先来看一个例f:已知函数 X,当 x-0 时,可 知 我 们 把 这 种 情 况 称 为/(X)趋向无穷大。为此我们可定义如下:设有函数y=/(),在 x=x 的去心邻域内有定义,对于任意给定的正数M(个任意大的数),总可找到正数b ,当0 卜-丽|N成立,则称函数当x 时为无穷大量。lim/(x)=oo记为:1”。(表示为无穷大量,实际它是没有极限的)同样我们可以给出当X f 8时,,(X)无限趋大的定义:设有函数y=/(x),当 X充分大时有定义,对于任意给定的正数“(一 个任意大的数),总可以找到正数材,当卜 肱 时,成立,则称函lim x)=8数当X f 8时是无穷大量,记为:X T 9无穷小量以零为极限的变量称为无穷小量。定义:设有函数,(X),对于任意给定的正数 (不论它多么小),总存在正数6 (或正数助,使得对于适合不等式,卜一丽区3(或 护“)的-切 x,所对应的函数值满足不等式火乃代,则称函数,(X)当 -瓦(或 x_8)时 为无穷小量.丽 /(x)=0 1 1m/(x)=0记作:(或 eg)注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有o可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于o.无穷大量与无穷小量是互为倒数关系的.关于无穷小量的两个定理定理一:如果函数/(X)在-X。(或 X-8)时有极限A,则 差/(切 一 上=8(x)是当x-X o (或X f 8)时的无穷小量,反之亦成立。定理无穷小量的有利运算定理a):有限个无穷小量的代数和仍是无穷小量;b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量.无穷小量的比较通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。定义:设 a,p 都是一 为 时的无穷小量,且 B 在 我的去心领域内不为零,l i m =0a):如果i 碣/,则称a 是 0 的高阶无穷小或B 是a 的低阶无穷小;l i m =c 0b):如果J 小户,则称。和 0 是同阶无穷小;h m =1c):如果尸,则称a 和 B 是等价无穷小,记作:a S B g 与。等价)23,所以当x-0 时,x与 3x 是同阶无穷小;l i m =例:因为 3工l i m =0因为,所以当x-*O 时,x 是 3x 的高阶无穷小;sin x 一lim-=1因为x,所以当x-0 时,s i n x 与x是等价无穷小。等价无穷小的性质vaf a a1l i m l i m =l i m 设aS,/S且 存在则 夕注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。s i n axl i m -例题:1.求i ta n/l i ms-i-n -a-x-=rl i m ax=一a解答:当 x-0 时,s i n a x s qx,ta n s b 才,故:ta n bx bx b.ta n x -s i n xl i m-例题:2.求 1 ta n 3xta n x -s i n x .ta n x(l -c o s x)式弓尤)l i m-z-=l i m-?-=l i m 7=解”ta n33x 2。ta n33x (3x)3 541-c o s x =2 s i n 2 CO 2 -()2=注:2 2,2注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子。函数的-聿要性质连续性在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性在定义函数的连续性之前我们先来学习个概念增量设变量x 从它的一个初值X I 变到终值X”终值与初值的差X X 1 就叫做变量X的增聚:,记为:4 x即:Z x=x2-x 1 增量C x可正可负.我们再来看一个例子:函数一 /(X)在点x0的邻域内有定义,当门变量X 在领域内从X o 变到X o+Z x时,函数y 相应地从了(而)变到了(通+为),其对应的增量为:Ax=/(勺 +&)-/(演)这个关系式的几何解释如卜.图:现在我们可对连续性的概念这样描述:如果当Wx趋向于零时、函 数y对应的增量4 y也趋向于零,即:lim Ay=0以TO那末就称函数丁=/(X)在 点X。处连续。函数连续性的定义:设函数丁=(幻 在 点 孔的某个邻域内有定义,如果有照称函数y=/(乃 在 点X。处连 续,且称沏为函数的丁=/(切 的 连续点H 0我们结合着函数左、布极限的概念再来学习一卜函数左、右连续的概念:设函数/(X)在区间(a,b 内有定义,如果左极限班存在且等于,即:班0,)=,0),那末我们就称函数,(X)在 点b左 连 续.设函数,(X)在区间 a,b)内有定义,如 果 右 极 限 躯 存 在 且 等 于/你),即:X辅J(a),那末我们就称函数/(X)在 点a右连续.一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若 又 在a点右连续,b点左连续,则在闭区间 a,b 连续,如果在整个定义域内连续,则称为连续函数。注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续.注:连续函数图形是一条连续而不间断的曲线。通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点函数的间断点定义:我们把不满足函数连续性的点称之为间断点.它包括三种情形:立 了 在x 0无定义;b):/(,)在x-x,时无极限;c):,(X)在x-x 时 有 极 限 但 不 等 于/(而);卜一面我们通过例题来学习一卜间断点的类型:孔 乃例 I:正切函数丁 二 13nx在 2处没有定义,所以点 2是函数y =t2nx的间断点,因l im t a n x =oo 乃f t x=,我们就称 2为函数=t a n x的无穷间断点;1y=s in 例 2:函数 为在点x=0 处没有定义;故当x-0 时,函数值在T 与+1 之间变动无限多次,我,1y=s in 们就称点x=0 叫做函数 X的振荡间断点;/(x)=0 l im/(x)=-1 l im/(%)=1例 3:函数 I 当x-0 时,左极限x f 0 ,右极限x r M ,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点x=0 是不存在极限。我们还可以发现在点x=0 时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把1:述三种间断点用几何图形表示出来如下:间断点的分类我们通常把间断点分成两类:如果设是函数,(X)的间断点,且其左、右极限都存在,我们把X。称为函数/(X)的 第 类间断点;不是第类间断点的任何间断点,称为第;类间断点.可去间断点若 x 0 是 函 数f(的x 间 断 点,但 极 限小血1 /(x)存在,那末X。是 函 数 的 第 一 类 间 断 点。此时函fix /(X)/()/(x0)=l im 1/(%)数不连续原因是:J O,不存在或者是存在但Z 即 工,。我们令 X”,则可使函数,(X)在点x 处连续,故这种间断点X。称为可去间断点。连续函数的性质及初等函数的连续性连续函数的性质函数的和、积、商的连续性我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:a):有限个在某点连续的函数的和是一个在该点连续的函数;b):有限个在某点连续的函数的乘积是一个在该点连续的函数;c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零):反函数的连续性若函数=,(X)在某区间上单调增(或单调减)且连续,那末它的反函数*=也在对应的区间上单调增(单调减)且连续例:函数V-s1 nx在闭区间 2 2上单调增且连续,故它的反函数A-m c s in X在闭区间上也是单调增且连续的。复合函数的连续性设函数当X-X。时的极限存在且等于a,即:螃 .而函数丁=/()在 点u=aV-1 1 m/。=/连续,那末复合函数y -当x x0时的极限也存在且等于J 8人 即:*1l i m c o s(l +x),例题:求TO1 1呵 c o s(l +x)*=c o s 叫(1 +力 叮=c o s a解答:“T1 1注:函数y =c o s(l+X)可看作y =c o s”与 =(1 +讲 复 合 而 成,且函数y =c o s”在点u=e连续,因此可得出上述结论。设函数=0 在 点x=x连续,且。(与)=%,而 函 数 =/()在点u=u ,连续,那末复合函数y=力 吠 切 在 点x=x也是连续的初等函数的连续性通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域内都是连续的;一 切初等函数在其定义域内也都是连续的.闭区间上连续函数的性质闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几条重要的性质,下面我们来学习一下:最大值最小值定理:在闭区间上连续的函数定有最大值和最小值。(在此不作证明)例:函数y二sinx在闭区间 0,2T T 上连续,则在点X=TF/2处,它的函数值为1,且大于闭区间 0,2T T 上其它各点出的函数值;则在点X=3TT/2处,它的函数值为T,且小于闭区间 0,2T T 上其它各点出的函数值。介值定理 在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:,3)二.,)=,口 在a、B之间,则在 a,b 间一定有一个多 ,使/6)二推论:在闭区间连续的函数必取得介于最大值最小值之间的任何值。二、导数与微分导数的概念在学习到数的概念之前,我们先来讨论下物理学中变速直线运动的瞬时速度的问题。例:设质点沿x轴运动时,其位置x是时间t的函数,X=J(X),求质点在心的瞬时速度?我们知道时间从心有增量at时,质 点 的 位 置 有 增 量=+&)-,o),这就是质点在时间段At的位移。因此,在此(;+&)-备)段时间内质点的平均速度为:.若质点是匀速运动的则这就是在次的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t。时的瞬时速度。我们认为当时间段At无限地接近于0时,此平 均 速 度 会 无 限 地 接 近 于 质 点t.时 的 瞬 时 速 度,即:质 点 在t。时 的 瞬 时 速 度+&)-/()_ 丫 氐lim-=lun=一&为此就产生了导数的定义,如下:导数的定义:设函数丁=/0)在点x的某一邻域内有定义,当自变量x在处有增量ax a+Ax也在该邻域内)时,相应地函数有增量A v =/(X0+&)一/),若与 之 比 当 x-O时极限存在,则称这个极限值为丁=乃在x,处的导数。记为:还可记为:函数/(X)在点x处存在导数简称函数,(X)在点X。处可导,否则不可导。若函数,(X)在区间(a,b)内每一点都可导,就称函数,(X)在区间(a,b)内可导。这时函数=/(/)对于区间(a,b)内的每个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数尸=/5)的导函数。注:导数也就是差商的极限左、右导数前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。若极限hm _ 弋(、lira 包 f。-A x存在,我们就称它为函数丁 一/5)在x=x0处的左导数。若极枷Ax存在,我们就称它为函数=/(x)在 X=X o处的右导数。注:函数丁=/(,)在x =3sinx+4,求V仅较 yf=(3sin X)+(4x)=3(sin x)+4(x)=3cosx+4 2x=3cosx+8x函数的积的求导法则法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成:如)=+3例题:已知/0)=4$皿Q求“砂f (x)f=(/x)fsin x+正(sin x)=sin x+cosx解答:2 Jx注:若是三个函数相乘,则先把其中的两个看成一项。函数的商的求导法则法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在(打y _以,一以3除以分母导数的平方。用公式可写成:V V2例题:已 知/=tan x,求解答:“方=(tan方=(八-皿祉腔刈=c。飞/x=1 =*cosx cos2 x cos2 x cos2 X复合函数的求导法则在学习此法则之前我们先来看一个例子!例题:求(s1n 2x)=?解答:由于(sm x)=co sx,故(s in 2 x)=c o s2 x这个解答正确吗?这个解答是错误的,正确的解答应该如下:(sin 2x)f=(2 sin xcos x)f=2(sin x)rcosx-t-sin x(cos x)f=2cos 2x我们发生错误的原因是(sm 2x)是对白变量x求导,而不是对2x求导。卜面我们给出复合函数的求导法则复合函数的求导规则规则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数。用公式表示为:dy dy du-dx du dx,其中u为中间变量例题:已知、=$小2求dx解答:设 =sin x,则y=s m矛 可 分 解 为,必=sin x因此=(以2 y(s i n x)f=2 w c o s x=2 s i n xc o s x=s i n 2xd x d u d x注:在以后解题中,我们可以中间步骤省去。的例题:已知1 ns m x,求 小d y 八.7 1 ,.c o s x=I n s i n r=-fs i n xv =-=c o t X解答:d x s i n x s i n x反函数求导法则根据反函数的定义,函数丁=/(,)为单调连续函数,则它的反函数x=0(,它也是单调连续的.为此我们可给出反函数的求导法则,如下(我们以定理的形式给出):定理:若X =W(M是单调连续的,且 孤 )0 ,则它的反函数丁 在 点x可导,且有:/(X)=-77Tw 3)注:通过此定理我们可以发现:反函数的导数等于原函数导数的倒数。注:这里的反函数是以y为白变量的,我们没有对它作记号变换。即:是对y求导,,(X)是对x求导例题:求y =a r c s i n x的导数.解答:此函数的反函数为x=s i n y ,故x =c o s y则:r1 1 1 1y=-=-/=-/_X c o s y bS i n 2 y a-x例题:求y =a r c t a n x的导数.解答:此函数的反函数为x=t a n y ,故/=s e c 21y则:,1 1 1 1y=-=-=-/s e c2 y 1 +t a n 2 y 1 +x2高阶导数v =我们知道,在物理学上变速直线运动的速度v(t)是位置函数s(t)对时间t的导数,即:出,dv d(dsa=,而加速度a 又是速度v 对时间t 的变化率,即速度v 对时间t 的导数:出 dt dt)a=sy色 传 这种导数的导数应I 成 J叫做$对 t 的二阶导数。下面我们给出它的数学定义:定义:函 数 丁=/(乃 的 导 数 y =(x)仍 然 是 x 的函数.我们把丁=/(工)的导数叫做函数d 2 y d _ d 传A =(x)的二阶导数,记作J 或以2 ,即:/=0 )或 左 以 而|相 应 地,把 丁=(工)的导数=叫做函数丁=/(X)的 一阶导数.类似地,二阶导数的导数,叫 做.阶导数,三阶导数的导数,叫做四阶导数,一般地(n-1)阶导数的导数叫做n 阶导数.d3 y dy dny分别记作:V,,或 以 3 ,加,dx*二阶及二阶以上的导数统称高阶导数。由此可见,求高阶导数就是多次接连地求导,所以,在求高阶导数时可运用前面所学的求导方法。例题:已知丁=+,求/解答:因 为 人 a,故丁”=0例题:求对数函数丁=的 n 阶导数。V=_ L /=-/=1 2 /)=_ 1 2 3解答:1 +x,(1 X),(),(1 X),产=(-1严 弃 义-一 般地,可得 Q +x)隐函数及其求导法则我们知道用解析法表示函数,可以有不同的形式.若函数y 可以用含自变量x的算式表示,像 y=s i n x,y=l+3 x 等,这样的函数叫显函数.前面我们所遇到的函数大多都是显函数.一般地,如果方程F(x,y)=O 中,令 x 在某一区间内任取一值时,相应地总有满足此方程的y 值存在,则我们就说方程F(x,y)=0 在该区间上确定了 x的隐函数y.把一个隐函数化成显函数的形式,叫做隐函数的显化。注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢?下面让我们来解决这个问题!隐函数的求导的若已知F(x,y)=O,求d”时,一般按下列步骤进行求解:a):若方程F(x,y)=O,能化为丁=,()的形式,则用前面我们所学的方法进行求导;b):若方程F(x,y)=O,不能化为丁=/(*)的形式,则是方程两边对x进行求导,并把y看成x的函数丁=/(X),用复合函数求导法则进行。例题:已知/+V一?=1,求d x解 答:此 方 程 不 易 显 化,故 运 用 隐 函 数 求 导 法.两 边 对x进 行 求 导,d,、d小 门 d y_尸2xdx dx,2 x +26-3+)=0,故d x=2 y-x注:我们对隐密数两边对x进行求导时,一定要把变量y看成x的函数,然后对其利用复合函数求导法则进行求导。例题:求 隐 函 数+2 y-X-3 x =,在x=0处的导数,l +2 1 x6y=-解答:两 边 对X求导W+21y =,故 W+2,当x=0时,y=0.故y,x-o二万有些函数在求导数时,若对其直接求导有时很不方便,像对某些事函数进行求导时,有没有一种比较直观的方法呢?下面我们再来学习种求导的方法:对数求导法对数求导法对数求导的法则:根据隐函数求导的方法,对某一函数先取函数的自然对数,然后在求导。注:此方法特别适用于事函数的求导问题。例题:已知x 0,求丁此题若对其直接求导比较麻烦,我们可以先对其两边取自然对数,然后再把它看成隐函数进行求导,就比较简便些。如下解答:先两边取对数:h V=s m X1 n X ,把其看成隐函数,再两边求导1 t,s i n xy=c o s x l n x d-y xt.s i n x、血*,,s i n x、血x y=y(c o s x l n x d-)=x (c o s x l n x +-)因为y 一 x,所以 x x例题:已知V(x-3)(x-4),求此题可用复合函数求导法则进行求导,但是比较麻烦,下面我们利用对数求导法进行求导1 nty=l n(x-1)+l n(彳-2)-l n(x -3)-l n(x -4)解 答:先两边取对数 2 再两边求导(x-l)(x-2)y 2 x-l x-2 x-3 x-4 因为 Y(x-3)(x-4),所 以1 l(x-l)(z-2)1 1 1 1、2 V(x-3)(x-4)x-1 x-2 x-3 x-A函数的微分学习函数的微分之前,我们先来分析一个