2022《分数与除法》教学反思15篇.pdf
2022 分数与除法教学反思15篇 分数与除法教学反思1 5篇身为一名人民教师,课堂教学是我们的任务之一,对学到的教学技巧,我们可以记录在教学反思中,那么应当如何写教学反思呢?下面是我为大家收集的 分数与除法 教学反思,希望对大家有所帮助。分数与除法教学反思1本节课在学习分数的意义基础上进行教学的。分数的意义是从部分与整体的关系揭示的。分数与除法可以表示两个整数相除(除数不能 为0)的商揭示分数的另一方面的意义,以加深和扩展学生对分数意义的理解,同时为学习假分数以及把假分数化为整数或带分数作准备。成功之处:夯实分数的意义的第二种情况。在教学例1时,将除法的意义与分数的意义联系起来。实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的意义来列算式,只不过结果是依据分数的意义得出来的。而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分得3个1/4块,把它们拼在一起,得 到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了 1 2份,把1 2份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数小除数=被除数/除数,不足之处:学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。改进措施:1 .加强求一个数是另一个数的几分之几的列式训练。2.在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示实际数量。分数与除法教学反思2本节课是在学生已经建立起除法意义的平均分和把一个物体或多个物体看作单位“1”进行平均分概念的基本上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。在这节课的教学中,做得比较好的方面是:1.教师能站在一个比较高的角度恰当地选择了教学的切入点,教师从解决简单的问题入手,把 6块饼平均分给2人,每人分得几块?把 1 块饼平均分给2人,每人分得几块?把 1 个蛋糕平均分给3个人,每人分得多少个?在此基础上引导学生观察3个算式和3 个得数,学生很快得出一个结论,两数相除,商可以是整数、小数和分数。在这教师还注意制作课件,说明一块饼的1/3 也就是1/3 张饼,为促进学生主动沟通知识问的内在联系作了一个很好的思路引领。2.在解决把3块月饼平均分给4个人,每人分的几块?这一重难点问题时,让学生借助学具动手分一分,并让学生充分展示和交流分的过程和分得的结果,充分展示了学生思维过程,加深了学生对知识的理解。3、注意引发学生的数学思考,促进学生主动沟通了知识间的内在联系,注重数学思维深刻性的培养。在课堂上让学生经历了操作、发现、迁移、归纳,使学生水到渠成的发现、归纳分数与除法的关系,在课堂上实现了师生的交往互动。我觉得有以下几方面值得我去思考:一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学 把3张饼平均分给4个同学,每个同学应分多少张饼?时,我让学生借助圆形纸片在小组内合作进行分一分,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。四、关 于“分母不能为0”这个环节,教学中如果能放缓脚步,通过分析一个分数的实际意义,引导学生理解分数中的分母表示平均分的分数,或是启发学生发现在除法中除数不能为0,除数相当于分数中的分母,所以分母不能为0 o这样的处理使学生借助已有的知识解决新的问题,效果会更好。分数与除法教学反思3理解与掌握分数与除法的关系及其应用。不但可以加深对分数意义的理解,而且为后面学习假分数,带分数,分数的基本性质以及比,百分数打下基础。所以,分数与除法的关系及应用在整个教材中起到了承上启下的重要作用。执教教师能从整体上把我教材,激励学生积极参与教学活动:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得;课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,是学生独立地发现并应用了“分数与除法的关系”,发展了学生的思维能力,教学效果显著。新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究,交流合作”特征的多样化的学习方式,从而促进学生知识,技能,情感,态度和价值观的整体发展。因此,教学学习活动应该是一个生动活泼的,主动的,富有个性的过程,教学的教与学的方式,应该是一个充满生命力的过程。在教学中我引导学生用3 张圆形纸片动手分一分,并让学生思考把3 块饼平均分给4 个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即一块饼的,3 块饼的,通过这一过程,学生充分理解了“3+4=”的算理。探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现教学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,教师让学生充分动手分圆片,让他们在自己的尝试,探究,思考中,不断产生问题,解决问题,在生成新的问题,给学生留足了操作的空间,因此学生对分数与除法的关系理解得比较透彻。分数与除法教学反思4“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。从以上的角度分析,彭老师的这节课具有以下两大优点:1、通过实际操作感悟新知识新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即 1 块饼的,3 块饼的,通过这一过程,学生充分理解了 3+4=的算理。2、在问题不断地解决与生成中探索新知识探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。总之,在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。建议:1、在总结了分数与除法的关系后,最好让学生说清楚分数与除法是否完全相同,然后利用表格说清楚它们之间的相同与不同的地方。从而让学生体会分子、分母、分数线只相当于被除数、除数、除号,不是等于。2、为了语言表达清楚,学生听得明白,建议把3 块饼的“块”改为“个”,平均分成的每一份就说“块”。这样听起来比较清晰。分数与除法教学反思5一、教学内容:分数与除法,教材第6 5、6 6 页例1 和例2二、教学目标:1.使学生理解两个整数相除的商可以用分数来表不O2.使学生掌握分数与除法的关系。三、重点难点:1.理解、归纳分数与除法的关系。2.用除法的意义理解分数的意义。四、教具准备:圆片、多媒体课件。五、教学过程:(一)复习把 6 块饼平均分给2 个同学,每人几块?板书:6 +2 =3 (块)(二)导入(2)把 1 块饼平均分给2个同学,每人几块?板书:1+2 =0.5(块)(三)教学实施1.学习教材第6 5 页的例1。(1)如果把1 块饼平均分给3 个同学,每人又该得到几块呢?1+30.3 (块)(2)1除以3 除不尽,结果除了用循环小数,还可以用什么表示?(3)指名让学生把思路告诉大家。就是把1 块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。老师根据学生回答。(板书:1 +3 =3(1)块)(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?2 .观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法3 .学习例2。(1)如果把3块饼平均分给4 个同学,每人分得多少块?(板书:3 +4)(2 )3 +4 的计算结果用分数表示是多少?请同学们用圆片分一分。老师:根据题意,我们可以把什么看作单位“1 ”?(把3块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。通过演示发现学生有两种分法。方法一:可以1 个 1 个地分,先把1 块饼平均分成4 份,得到4个 4(1),3 个饼共得到12个 4(1),平均分给4 个学生。每个学生分得 3 个 4(1),合在一起是4(3)块饼。方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)(3 )加深理解。(课件演示)老师:4(3)块饼表示什么意思:把3 块饼一块一块的分,每人每次分得4(1)块,分了 3 次,共分得了 3 个 4(1)块,就是4(3)块。把3 块饼叠在一块分,分了 一次,每人分得3 块 4(1),就是4(3)块。现在不看单位名称,再来说说4(3)表示什么意思?(表示把单位“1 ”平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4 份,表不这样一份的数。)(4)巩固理解 如 果 把2块 饼 平 均 分 给3个人,每人应该分得多少块?2 4-3=3(2)(块)刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)从刚才的研究分析,你能直接计算7+9的结果吗?(9(7)4.归纳分数与除法的关系。(1 )观察讨论。请学生观察1 +3 =(块)3 +4 =4(3)(块)讨论除法和分数有怎样的关系?学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)用文字表示是:被除数+除数=老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。(2 )思考。在被除数+除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)(3)用字母表示分数与除法的关系。老师:如果用字母a、b分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?老师依据学生的总结板书:a +b=(bW O)明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)5.巩固练习:(1)口答:7 1 3=()()8(5)=()4-()()+2 4=2 4(2 5)9 9=()()0.5 4-3 =3 (0.5)n +n i=()()(m W O)1米的8(3)等于3米的()把2米的绳子平均分3段,每段占全长的(),每段长()米。(2)明辨是非一堆苹果分成1 0份,每份是这堆苹果的1 0(1)()1 米的4(3)与3 米的4(1)一样长。()一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的 3(1)o ()把 4 5 个作业本平均分给1 5 个同学,每个同学分得4 5 本的1 5(1)o ()(3)动脑筋想一想把一个4平方米的圆形花坛分成大小相同的5 块,每一块是多少平方米?(用分数表示)小明用4 5 分钟走了 3 千米,平均每分钟走了多少千米?每千米需要多少时间?分数与除法教学反思6本节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,理解分数与除法的关系,会用分数来表示两数相除的商,能运用分数与除法的关系解决一些简单的问题。我首先让学生利用整除的方法来解决问题,从而复习了除法的意义,并且强调-对于均分问题用除法算。接着,再引出几个用除法解决的问题(不能整 除),根据前边分饼的活动,结果可以用分数表示,从而把除法与分数联系了起来。新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3 张圆形纸片动手分一分,并学生思考把3 块饼平均分给4 个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即 1 块饼的,3 块饼的,通过这一过程,学生充分理解了 3+4=的 算 理。请同学们认真观察上面几个算式,有什么发现?同桌交流、讨论,然后找学生说一说:被除数相当于分数的什么,除数相当于分数的什么,再找学生完整地说,我再补充,并强调分数与除法的关系且板书。整节课,学生的思维能力和观察力都有充分的展现,学生们想出了各种方法或者道理来证明,语言表达得十分流畅,分析能力路较强。通过最后练习题的巩固,学习效果不错,大大的增加了他们学习数学的信心,体验到了成功的快乐。三角形的特性听后反思怎样的小学数学课堂教学才是有效的?要想回答这个问题,首先要明确课堂教学的有效性是指什么。课堂教学的有效性是指通过课堂教学使学生获得发展,促进学生知识与技能,过程与方法,情感、态度与价值观三者的协调发展。就是通过课堂教学活动,使学生在学业上有收获、有进步、有提高。具体而言也就是使学生在认知上,由不懂到懂,由不会到会,又知之甚少到知之较多;使学生在情感上,由不喜欢到喜欢,由不感兴趣到感兴趣,由不热爱到热爱。总而言之,课堂教学的有效性的核心问题是:学生是否愿意学,会不会学,能否积极主动地学。本节课中通过让学生说一说情境图中的三角形,再让学生联系生活实际思考,并说一说“生活中哪些物体上有三角形?”激发了学生学习三角形特性的兴趣,引起学生对三角形及其在生活中的作用的思考。为让学生进一步研究三角形的特征,了解三角形的作用做好准备。让学生在“画三角形”的操作活动中进一步感知三角形的属性,抽象出概念。这样有利于学生借助直接经验,把抽象的概念和具体的图形联系起来。这里教师充分考虑到学生已有的生活经验和知识基础,恰当把握教学要求。三角形是生活中常见的图形,学生已初步认识过。此处重点是引导学生发现三角形的特征,概括出三角形的定义。为此,还出示了一组含正、反例的图形让学生辨析,帮助学生建立正确的三角形概念。此处是本节课的教学重点,通过边画边想、组织交流、引导概括三角形的特征,从而有效地落实了本节课重点的教学。由实例入手,让学生量出三角形的高度,引出底和高的概念进行教学。联系生活实例,引导学生解决日常生活中遇到的实际问题,增加数学学习的趣味性。这里采用的是“情境、问题一实验、解释一特性应用”的探究教学方法。教师在教育教学实践中,选择合理的教学方法是保证教学有效性的关键。学生通过对空间与图形内容的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形。本节课教学是在上述内容基础上进行的,通过这一内容的教学进一步丰富学生对三角形的特性的认识和理解。分数与除法教学反思7“分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3 +4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。五年级数学下册分数和除法教学反思验 证“3+4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的.方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块 的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。观察等式3+4=3/4、3 +5 =3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=()/()米2 3分=()/()o学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成1 0份,7分米是这样的7份,所 以7分米=7/1 0米;二是低级单位换算成五年级数学下册分数和除法教学反思高级单位时,用除以进率的方法解决问题,即7 +1 0=7/1 0 (米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。分数与除法教学反思8分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在 设 计 分数与除法这一课时,从以下两方面考虑:1 .以解决问题入手,感受分数的价值。从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若千份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。2 .分数意义的拓展与除法之间关系的理解同步。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。反思这节课,在这一过程中,我在教学之前认为分数与除法的关系很简单,而在实际教学时发现并不是一个简单的问题。因此我把重点放在例2上:3+4=()(块)的探究上。学生在理解的时候,还真的很难得到3+4=()(块),开始都猜想是,然后通过动手小组去操作,经历验证猜想的过程中,学生汇报中出现了是1/4,因为他们认为是把3饼看作单位“1”平均分成4份。每人就得了 1/4说明学生在操作中在思考了,同时也暴露出了学生在分数意义的理解上出了问题,问题在哪里呢?出在把谁看作单位“1”上,问题在对分数意义的理解上,这是难点。学生认为简单,实际上不简单,因此我们的教学必须重视学生的说理和交流。把重点放在3+4=()(块)上,我借助的是学生的动手操作,采取让学生之间的互相交流和辩论解决了学生认识上的难点。把重点放在3+4=()(块)上,需要注意的是:在指导过程中,不能讲得太多,讲得过多,学生会越来越不清楚。从分数与除法的关系这个内容的教学我发现:学生的例子太少,没有说服力,为了学生今后学习中遇到问题上该如何解决,我们必须在常规的教学中去渗透数学思想方法,授 人 以“渔”。于是教学中,在学生得到了 3+4=()(块)后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。根据学生不同的认知情况,安排了适当的模仿练习,感性体验数学活动,促进学生对结果的深层次的理解。分数与除法教学反思9本节课的教学着重让学生在以下几方面理解:1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。2、一个分数,不但可以从分数的意义上理解,也可以从分数本节课的教学着重让学生在以下几方面理解:1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。2、一个分数,不但可以从分数的意义上理解,也可以从分数与除法的关系上理解。如:四分之三可以理解为把单位“1”平均分成4份,表示其中的3 份的数;也可以理解为把3 平均分成4份,表示这样一份的数。3、为了让学生更好的记忆分数与除法的关系,我还设计了顺口溜:分数、除法关系妙,记忆方法有诀窍。两数相除分数表,弄清位置很重要。除号相当分数线,分子、分母两数担。位置顺序不能调,相互关系要记牢。分数与除法教学反思1 0观察是学生常用的一种学习方法。如在本课得出被除数+除数=被 除 数/除 数 时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:(1)分母能不能为0?(2)用字母如何表示它们的关系?(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a 表示被除数,b 表示除数时,学生很轻松就用a/b 表示出来;在 探 究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数除数=被 除 数/除 数 的 关 系 中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计 分数与除法这一课时,从以下两方面考虑:一、以解决问题入手,感受分数的价值。从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若千份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。二、分数意义的拓展与除法之间关系的理解同步。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。分数与除法教学反思11分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3+4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:1.通过实际操作感悟新知识在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。接着出示要把3 张饼平均分给4 个小朋友,每个小朋友分得多少?四人一小组想办法把3 张圆形纸片平均分给 4 个小朋友。并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1 张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了 3+4=3/4的算理。2、使学生清楚为什么要用分数来表示除法算式的结果在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。1 +3=8 +9=2 +6=让学生把计算结果写在练习本上,比比看谁先算完。结果有的学生一两秒钟就举起了手,而有的学生费了很 长 时 间 才 写 出 了 计 算 结 果。汇 报 之 后,引 导 学 生 思 考:1 4-3=0.3 3 3 与 1 4-3=1/3 8 +9=0.8 8 与 8 +9=8/9 有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。这时告诉学生,以后计算两个整数相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。3、借机引申,为后续学习做好铺垫第一次向学生介绍分率与数量的区别。如 “把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?把2米长的绳子平均分成7段,每段长是这根绳子的几分之几?每段长多少米 把4千克盐平均分成5份,每份重量是盐的总数的几分之几/每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1+4=1/4 1 +7=1/7 1 +5=1/5。而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。前三道题第二问的算法分别是 1+4=1/4(张)2 4-7=2/7 (米)4+5=4/5(千克)此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的铺垫作用。4、让学生自主建构新知识当学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,引导学生把数字换成它们的名称:被除数+除数=被除数/除数。这时候,再让学生在练习本上用字母a、b表示除法与分数的关系。多数学生写下:a+b=a/b,老师拿一名稍差学生的板书出来,故意表扬这位同学。正表扬却突然转身给这名学生作业后面一个大叉号。正当同学们都诧异的时候?问为什么错了?这时几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,追问:”为什么b不能等于0?”。我继续用课堂中的例题把1 张饼平均分给4 个人,每人分得这块蛋糕的1/4 为例,让学生说说这个分数中的 4,表示什么?“如 果 把 换 成 0 呢?学生恍然大悟:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。在用字母表示分数与除法的关系时一一 a+b=a/b(b W 0)”学生经常会忘记,这里的b不能为0 o 通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,所以在分数中分母不能为0的道理。这里并不直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0o而是通过分析一个分数的实际意义让学生充分理解分数中的分母表示平均分的份数,所以分母不能为“0”的道理。本节课的不足之处:虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有引导学生总结出来。除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。分数与除法教学反思1 2本节课重点是理解分数与除法的关系、带分数与假分数互化。难点还是理解除法与分数的关系,虽然在复习旧知,如:把 6 米的绳子平均分成两段,每段长多少米?简简单单的复习为探索新知做铺垫,可课件呈现课件呈现把一块蛋糕平均分给2个小朋友,每人能得到几块蛋糕?学生把刚才复习的除法计算的知识进行迁移,很容易能用算式1 2来计算,有的学生会直接用二分之一表示,我引导:既然都是正确,就说明可以用等于号了。接着从课本的例子:如果有7块蛋糕,要分给3个小朋友,每个小朋友又能得到多少呢?学生很快就能列式表示,并用分数表示结果。然后让学生观察两个式子,看看分数与除法有什么关系?先让学生同组交流讨论,再全班反馈交流,学生能说出分数和除法有关系,就是说不出所以然,我只好问:这个分子和除法的什么好像相当?总算是把这些关系理清,可学生提出疑问:“能不能说分子等于被除数?”我说不行,只 能 用“相当”更恰当。对于假分数化带分数,我从上次作业的一个图形引导,二又八分之六等于八分之二十二,完整一个单位“1”有八份,那么2个单位就是十六加上不完整的6就是22,看来分子除以分母后的商是整数部分,余数是新的分子,反过来是带分数化假分数,可以引导学生从被除数二除数X商+余数,这样学生就很明朗。特别强调的是:在带分数和假分数互化时,一定要演算,培养演算的习惯是学生学习中不可缺少的。本节课遗憾的是讲得太多,学生思考的时间少了,虽然学生认真听讲,但不利于学生的探究能力,值得注意。分数与除法教学反思13 分数与除法的关系 教学反思分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。教师能从整体上把握教材,激励学生积极参与数学活动:问题让学生自己解决,方法让学生自己探索,规律让学生自己发现,知识让学生自己获得。课堂上给了学生充足的思考时间和活动空间,学生有了表现自我的机会和成功的体验,发挥了主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,使学生独立地发现并获得分数与除法的关系,发展了学生的思维能力,达到教学目标,突破了重点和难点。我在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作,演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力差的学生,在演示说明的时候,叫的学生少,如果能多叫几个学生演示说明,再加上教师的点拨,我想这部分学生在理解上这难点时,就会比较容易。学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学把3块饼平均给4个人,每人应分多少饼?有很多同学都知道怎样分,但说得不是很明白。我让一个人说了后再请其他同学用数学语言完整的说一遍,这样长时间可以训练学生的用数学语言来表达德能力。而叠在一起分的方法没有出现,我只好亲力亲为了,边演示边说明,但有部分同学不能理解。课后想来,如果我在一块一块的分时,追问一句:这种方法单位一是什么?肯定会有学生想到可以把一块饼看做单位1 也可以把三块饼看做单位1 啊!也许后面的方法就可以由学生说出来,用他们的语言来表达,他们会更有共鸣,更能理解。在以后的备课中,要把课堂预设充分考虑周全。备课不仅要备教材更要备学生,这样才能真正发挥学生的主体作用。分数与除法教学反思1 4一、教学内容:分数与除法,教材第6 5、6 6 页例1 和例2二、教学目标:1.使学生理解两个整数相除的商可以用分数来表不O2.使学生掌握分数与除法的关系。三、重点难点:1.理解、归纳分数与除法的关系。2.用除法的意义理解分数的意义。四、教具准备:圆片、多媒体课件。五、教学过程:(一)复习把 6 块饼平均分给2 个同学,每人几块?板书:6 +2 =3 (块)(二)导入(2)把 1 块饼平均分给2 个同学,每人几块?板书:1+2 =0.5(块)(三)教学实施1.学习教材第6 5 页的例1。(1)如果把1 块饼平均分给3 个同学,每人又该得到几块呢?1 +3=0.3 (块)(2)1 除以3 除不尽,结果除了用循环小数,还可以用什么表示?通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进 而 提 出 当1 +3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。(3)指名让学生把思路告诉大家。就 是 把1块 饼 看 成 单 位“1”,把 单 位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。老师根据学生回答。(板书:1 3二块)(4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?通过这样的练习,为下面的操作打下基础。2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法3.学 习 例2。(1 )如 果 把3块饼平均分给4个同学,每人分得多少块?(板书:3+4)(2 )3+4的计算结果用分数表示是多少?请同学们用圆片分一分。老师:根据题意,我们可以把什么看作单位“1 ”?(把3块饼看作单位“1”。)把它平均分成4份,每份是多少,你想怎样分?请同学到投影前演示分的过程。通过演示发现学生有两种分法。方法一:可 以1个1个地分,先 把1块饼平均分成4份,得到4个,3个饼共得到1 2个,平均分给4个学生。每个学生分得3个,合在一起是块饼。方法二:可以把3块饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到块饼