2015~2016年北师大版六年级数学下册全册教案(新).docx
第一单元 圆柱与圆锥【单元教学内容】:面的旋转 圆柱的表面积 圆柱的体积 圆锥的体积【单元教学目标】:1、结合具体情境和操作活动,引导学生整体把握“点、线、面、体”之间的联系。2、从多种角度探索圆柱和圆锥的特征。3、探索圆柱表面积的计算方法,发展空间观念。4、经历圆柱和圆锥体积计算方法的探索过程,体会“类比”的思想。5、在解决实际问题中用活所学知识,感受数学与生活的联系。【单元教材分析】:学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元主要通过五个活动,引导学生学习面的旋转(圆柱和圆锥的认识)、圆柱的表面积、圆柱的体积、圆锥的体积等内容,并参与实践活动。本单元教材编写力图体现以下主要特点:1、结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。 2、重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。 3、引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。 4、在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。面的旋转【教学目标】:知识与能力:通过初步认识圆柱和圆锥使学生感受到数学与生活的密切联系。过程与方法:通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。情感态度和价值观: 通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。【教学重点】:1、联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。2、通过观察,初步了解圆柱和圆锥的组成及其特点。【教学难点】:通过观察,初步了解圆柱和圆锥的组成及其特点。【教学用具】:各种面、圆柱和圆锥模型【教 法】:引导法【学 法】:自主探究【教学课时】:一课时【教学时间】:【教学过程】:一、 活动一如图:将自行车后轮架支起,在后车车条上系上彩带。转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?学生根据发现的现象(彩带随着车轮的转动形成了圆)说明自己的想法,并体验:点动成线二、 活动二观察下面各图,你发现了什么?学生发现:风筝的每一个节连起来看,形成了一个长方形;雨刷器扫过后形成一个半圆形,旋转门转动后形成圆柱。学生体验:线动成面三、 活动三如图:用纸片和小棒做成下面的小旗,快速的旋转小棒,观察并想象旋转后形成的图形,再连一连。1、学生实际动手操作,然后根据想象的图形连线11(圆柱) 23(球) 34(圆锥) 42(圆台)2、介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。指名学生说。小结:我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。四、 找一找请你找一找我们学过的立体图形五、 说一说圆柱与圆锥有什么特点?(小组的同学互相说一说)圆柱:有两个面是大小相同的圆,有另一个面是曲面。圆锥:它是由一个圆和一个曲面组成的。六、 认一认圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱有一个曲面,叫做侧面。圆柱两个底面之间的距离叫做高。圆锥的底面是一个圆。圆锥的侧面是一个曲面。从圆锥顶点到底面圆心的距离是圆锥的高。(教师画出平面图进行讲解。并在图上标出各部分的名称。)七、练一练1、找一找,下图中哪些部分的形状是圆柱或者圆锥?再和同学们说一说生活中哪些物体的形状是圆柱或者圆锥。2、下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出底面的直径和高。3、想一想,连一连4、应用题八、作业布置:【板书设计】:【课后反思】:圆柱表面积【教学目标】:知识与能力:能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系过程与方法:通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。情感态度和价值观:结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。【教学重点】:使学生认识圆柱侧面展开图的多样性。【教学难点】:学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。【教 法】:引导法【学 法】:小组合作 自主探究【教学用具】:课件、圆柱体的瓶子、剪子【教学课时】:一课时【教学时间】:【教学过程】:一、创设情境,引起兴趣。拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)二、学习目标:1、通过想象,操作活动,探究圆柱的侧面积和表面积的计算方法。2、能够灵活运用圆柱的表面积的计算方法解决生活中的实际问题。三、自主学习,操作观察。(教材P5_P7页)1、什么叫表面积?找找摸摸圆柱体的表面积。2、看书自学,操作观察。我的发现:_ 。3、组内交流,导出圆柱表面积计算公式圆柱侧面积=_ 。圆柱表面积= _ 。如果用S侧表示圆柱的侧面积,C表示底面周长,h表示高,那么S侧= 。S表= 。四、教师小结,明确公式。五、合作探究,展示提升。(一)、填空(1)已知圆柱底面半径和高。S表= 已知圆柱底面直径和高。S表= 已知圆柱底面周长和高。S表 (2)解决书上的例题。侧面积: 底面积: 表面积: 答: (二)、分组展示1、填空圆柱的侧面沿着高展开可能是( )形,也可能是( )形。第二种情况是因为( )2、要求一个圆柱的表面积,一般需要知道哪些条件( )3、教材第六页试一试。六、作业布置【板书设计】:圆柱体的表面积圆柱的侧面积底面周长×高S侧C:h 长方形面积 长×宽圆柱的表面积圆柱的侧面积底面积×2【教学反思】:圆柱体侧面积和表面积练习【教学目标】:知识与能力:进一步理解圆柱体侧面积和表面积的含义。过程与方法:掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。情感态度和价值观:结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。【教学重点】:掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。【教学难点】:圆柱表面积的实际应用。【教 法】:引导法【学 法】:自主探究 练习法【教学课时】:一课时【教学时间】:【教学过程】:一、实际应用1、 2、 3二、作业布置:数学书 6页 7 8 9题【板书设计】:【课后反思】:圆柱的体积【教学目标】:知识与能力:通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。过程与方法:通过圆柱体体积公式的推导,培养学生的分析推理能力。情感态度和价值观:理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。【教学重点】:圆柱体体积的计算【教学难点】:圆柱体体积公式的推导【教 法】:引导法【学 法】:自主探究【教学用具】:圆柱体学具、课件【教学课时】:一课时【教学时间】:【教学过程】:一、 复习引新1求下面各圆的面积(回答)。(1)r=1厘米; (2)d=4分米; 2想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。3提问:什么叫体积?常用的体积单位有哪些?4已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)二、出示学习目标:1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,会运用公式正确地计算圆柱的体积和容积。 2、初步学会用转化的数学思想和方法,解决实际问题的能力三、学生自主学习P810内容我的发现:圆柱的底面是 形,可以分成许多相等的 形,然后再把圆柱按照这些扇形,沿 切开,拼起来,就近似一个 体。平均分的份数越多(所分的份数必须是偶数),拼起来的整个形体就越近似于一个 体。因此:圆柱体的体积= 如果用V表示圆柱的体积,用S表示圆柱的底面积,用h表示圆柱的高,圆柱的体积公式用字母表示为: 提示:在计算过程中,有的并不是直接给出圆柱的底面积,而是给出底面半径或直径,我们应先求出 ,再求圆柱的体积。计算公式是:V= 或 。、实战练习:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积是多少吗?总结:做本题应注意 知识点2:圆柱容积的意义和计算方法(二)想一想,论一论:(思考一分钟,然后将你的想法与大家分享)1、一个圆柱形容器所能容纳的物体的体积,叫做这个圆柱的容积。例如:圆柱形的水杯、水桶,它们装满水的体积,就是水杯、水桶的容积。因此圆柱容积的计算方法和 的计算方法相同,即圆柱的容积= 。2、一个圆柱体容器的体积和容积一样吗?四、学生自主学习展示五、小结。圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)教学“试一试”小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢? 六、巩固练习:练习册练习七、课堂小结这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。八、作业布置【板书设计】:圆柱的体积=底面积×高V=Sh【课后反思】:圆柱体积的练习课【教学目标】:知识与能力:进一步理解和掌握圆柱的体积计算公式,并能应用到实际解决问题中。过程与方法: 培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。情感态度和价值观:理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。【教学重点】:理解和掌握圆柱的体积计算公式。【教学难点】:圆柱体积计算公式的推导。【教 法】:引导法【学 法】:自主探究【教学课时】:一课时【教学时间】:【教学过程】:一、基本练习二、实际应用说解题思路:这道题的注意的地方:单位的统一学生计算。说说哪个体积大?为什么?上升的2厘米是什么?为什么发生变化?总结:分别说说表面积和体积的计算方法。【板书设计】:【课后反思】:圆锥的体积【教学目标】:知识与能力:使学生理解求圆锥体积的计算公式过程与方法:会运用公式计算圆锥的体积情感态度和价值观:培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。【教学重点】:圆锥体体积计算公式的推导过程【教学难点】:正确理解圆锥体积计算公式【教 法】:引导法【学 法】:自主探究【教学课时】:一课时【教学时间】:【教学过程】:一、铺垫孕伏1、提问:(1)圆柱的体积公式是什么?(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题(板书:圆锥的体积)二、探究新知(一)指导探究圆锥体积的计算公式1、教师谈话:下面我们利用实验的方法来探究圆锥体积的计算方法老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?2、学生分组实验学生汇报实验结果圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满4、引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 板书:5、推导圆锥的体积公式:用字母表示圆锥的体积公式。板书:6、思考:要求圆锥的体积,必须知道哪两个条件?7、反馈练习圆锥的底面积是5,高是3,体积是()圆锥的底面积是10,高是9,体积是()(二)算一算学生独立计算,集体订正说说解题方法三、全课小结通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)四、作业布置【板书设计】:【课后反思】:圆锥的体积练习课【教学目标】:知识与能力:进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。过程与方法:进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。情感态度和价值观:进一步熟悉圆锥的体积计算【教学难点】:圆锥的体积计算【教学重点】:圆锥的体积计算【教 法】:引导法【学 法】:自主探究【教学课时】:一课时【教学时间】:【教学过程】:一、基本练习圆锥体积计算公式= 相邻两个面积单位之间的进率是多少?相邻两个体积单位之间的进率是多少?二、实际应用三、作业布置:书本12页 1-6题【板书设计】: 【课后反思】:第一单元小结【教学目标】:知识与能力:能在老师指导下,进行单元知识整理。加深理解和掌握圆柱和圆锥体积计算公式的推导,联系前面所学有关内容,形成有关体积计算的知识结构。过程与方法:会应用公式熟练进行计算,独立解决一些实际问题。掌握一定的问题解决策略。情感态度和价值观:通过本课教学,培养学生主动学习的良好品质,开发学生智力,发展创造思维。【教学重点】:会应用公式熟练进行计算,独立解决一些实际问题。【教 法】:引导法【学 法】:自主探究【教学课时】:一课时【教学时间】:【教学过程】:、知识点归纳:一、 面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。(2)两个底面间的距离叫做圆柱的高。(3)圆柱有无数条高,且高的长度都相等。3.圆锥的特征:(1)圆锥的底面是一个圆。(2)圆锥的侧面是一个曲面。(3)圆锥只有一条高。二、 圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积底面周长×高,用字母表示为:S侧ch3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧 (2)已知底面直径和高,求侧面积,可运用公式:S侧(3)已知底面半径和高,求侧面积,可运用公式:S侧4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=或S表=5.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。三、 圆柱的体积1. 圆柱的体积:一个圆柱所占空间的大小。2. 圆柱的体积底面积×高。如果用V表示圆柱的体积,S表示底面积,h表示高,那么VSh。3. 圆柱体积公式的应用:(1) 计算圆柱体积时,如果题中给出了底面积和高,可用公式:V (2) 已知圆柱的底面半径和高,求体积,可用公式:V(3) 已知圆柱的底面直径和高,求体积,可用公式:V(4) 已知圆柱的底面周长和高,求体积,可用公式:V圆柱形容器的容积底面积×高,用字母表示是V5.圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。四、 圆锥的体积1. 圆锥只有一条高。2. 圆锥的体积1/3×底面积×高。如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:3. 圆锥体积公式的应用:(1)求圆锥体积时,如果题中给出底面积和高这两个条件,可以直接运用“v= 1/3 Sh”这一公式。(2)求圆锥体积时,如果题中给出底面半径和高这两个条件,可以运用1/3r2h(3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3(d/2)2h(4)求圆锥体积时,如果题中给出底面周长和高这两个条件,可以运用1/3(c/2)2h、针对性练习 一个圆柱和一个圆锥等底等高,体积和是立方厘米,圆柱体( ) 把一个圆柱削成一个最大的圆锥,削去立方厘米,圆柱体积是 ( ) 圆柱的体积是和它等底等高的圆锥体积的( )圆锥的体积是和它等底等高的圆柱体积的( )圆柱的体积比和它等底等高的圆锥体积多( )圆锥的体积比和它等底等高圆柱的体积少( )三选择题: 1、一个圆柱体,侧面展开图是正方形,它的边长是18.84厘米,它的底面半径是( )厘米。A 0.3 B 10 C 3 D 62、一个圆柱和一个圆锥的底相等,体积也相等.圆柱的高是1.2分米,圆锥的高是( )分米. A 0.4 B 3.6 C 1.2 D 0.63、学校修建一个圆形喷水池,容积是37.68立方米,池内直径是4米,.那么这个水池深( )米.A 2 B 3 C0.6 D 5四.应用题 (第(1)8分,其它每题7分,共29分)1. 一根空心钢管长2米,内直径是10厘米,外直径是20厘米,如果每立方厘米的钢材重7.8克,这根钢管重多少千克?2.把圆柱体铁块熔制成一个圆锥体铁块,已知圆柱的底面半径是2厘米,高是3厘米,熔制成圆锥的底面半径是3厘米.那么圆锥的高是多少?五、作业布置:练习一【板书设计】:【课后反思】:第二单元 比例【单元教学目标】:1了解比、比例、按比例分配的意义,知道比和比例各部分的名称,知道比的各部分与分数、除法各部分的关系。2理解比和比例的基本性质,会求比值和化简比,会解答按比例分配的简单问题。3 能对现实生活中有关比的数字信息作出合理的解释,在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。4能探索出解决问题的有效方法,并能尝试解释所得的结果。5体验数学与日常生活的密切联系,认识到许多简单实际问题可以用比来描述或用按比例分配的方法来解决,发展数学应用意识。【单元教材分析】:比和比例的知识是数学课程标准 “数与代数”领域“正比例、反比例”部分的内容。从这部分内容安排看,传统的教材通常把比、比例、比例尺、正比例、反比例的内容安排在六年级下册集中一个单元来学习,这样的安排,内容多,学习时间长,而且学习内容又比较抽象,容易使学生产生厌烦情绪,不利于学生对知识的理解和应用。考虑到现实生活中有许多比和按比例分配问题,学生是容易理解的。所以,从分散难点、重视应用的角度出发,本套教材把数学课程标准的4条要求分两个单元落实。六年级上册本单元“比”,落实数学课程标准中的第一条目标;六年级下册第二单元“正比例 反比例”,落实数学课程标准中的第二至第四条目标。“比”表示两个数相除的关系,即:比的前项和后项的关系是被除数和除数的关系。任何两个相关数量的比都可以抽象为两个数的比。按比例分配是把一个数量按照一定的比来进行分配,是比的知识的具体应用,在生产和生活中有着广泛的应用。因此数学课程标准特别强调要让学生在实际情境中理解什么是按比例分配,并会用按比例分配的知识解决实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有较大的变化,主要体现在以下几个方面:一、让学生在具体的情境中学习数学,理解数学概念。本单元要认识的数学概念有比、比例、按比例分配等,学生对这些概念实际意义的理解,是学生能否应用比的知识解决问题的关键。所以,教材淡化概念的“形式化”叙述,通过选取学生熟悉的、鲜活的事例,让学生在具体情境中理解比和比例及按比例分配的实际意义。如,选择现实生活中搅拌水泥沙的事例,利用人们生活中的语言“1千克水泥对3千克沙子”认识比;选择我国国旗法中规定的五种国旗长和宽的比都一样的真实素材,让学生通过计算不同规格的国旗长和宽的比值,认识比例;结合在一块长方形地里种茄子和西红柿,理解按比例分配的实际意义。 二、让学生经历知识的发生、发展过程,自主建构数学知识。 本套教材注重数学知识之间的联系,从学生已有知识和经验出发,使学生在运用已有知识自主做的过程中,积极地、主动地构建知识体系。如,学习比的意义时,教材选择了现实生活中调配涂料的问题,通过“白色涂料和蓝色涂料的质量有什么关系”的问题,启发学生用已有知识写出6÷3=2和3÷6= 1/2两个算式,然后,说明白色涂料和蓝色涂料的关系也可以用比表示,并写出比的式子。这样,把以前的除法和新知识比联系在一起,使学生认识到“比表示两个数相除”。再如,比的基本性质,选择了学生平常玩的踢毽子的数据,先让学生根据分数的基本性质求比值,再让学生说一说比的前项、后项、比值有什么关系,把比的基本性质和分数的基本性质、除法中商不变的性质联系起来。又如,探索比例的基本性质,让学生计算自己写的比例,发现规律,归纳总结性质,经历自主建构知识的过程。三、注重解决实际问题,培养学生的应用意识。教材选取了大量的、真实的工农业生产和现实生活中的典型事例,并给学生自主解决问题的空间。如,菜农按比例种植茄子和西红柿的问题;建筑工人把水泥、砂子、石子按2:3:5配置混凝土的事情;商店配制什锦糖的典型事例;配制药水、配置葡萄糖注射液等现实问题。通过学生自主解决这些生活中的实际问题中,体会比和比例知识在现实生活中应用的广泛性,培养学生应用数学知识解决实际问题的意识和能力,增强学好数学的自信心。本单元教材是在学生学习了整数和分数乘、除法基础上安排的,主要内容有:认识比和比的基本性质,求比值和化简比,认识比例和比例的基本性质,解按比例分配问题。【单元课时安排】:6课时。比例的认识【教学目标】:知识目标:理解比例的意义,认识比例各部分的名称。能力目标:能运用比例的意义判断两个比能否组成比例,并会组比例。情感目标:感受数学的奥秘,培养数学兴趣。【教学重点】:理解比例的意义。【教学难点】:1、能根据比例的意义写比例。2、明确两种相关联的量成相除关系,且它们的比值相等时,这两个比组成比例关系。【教 法】:引导法【学 法】:自主探究【教学课时】:一课时【教学时间】:【教学准备】:小黑板【教学活动】:一、创境激疑上学期学习“比的认识”时,我们讨论“图片像不像”的问题。请同学们联系比的知识,再想一想,怎样的两张图片像?(比值相等)这节课我们就一起来深入探究。 二、互动解疑1、比例的意义在情境中感受两种相关联的量之间的变化规律。要求小组合作的形式完成,提出要求。(1) 写出每个图片的长与宽的比(2) 求出各比的比值(3) 观察特点,写出规律板书:图片A:6:4=3:2=1.5图片B:3:2=1.5图片C:8:3=2.66图片D:12:8=3:2=1.5图片E:12:2=6比值相等的两个比用“=”连接起来,这种等式叫做比例,今天我们一起来探讨比例的相关知识,板书课题。结论:像12:6=8:4, 6:4=3:2这样表示两个比值相等的式子叫做比例。巩固练习:(1)要求每个学生写出一个比例,教师巡视指导且批阅。(2)要求每个学生写出一个比例,同桌交流。(3)做一做教材表格的题,完成后由教师批改。2、认识比例各部分名称组成比例的四个数叫做比例的项。在12:6=8:4中,12,6,8和4都是该比例的项。在比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:12:6=8:4中12和4是比例外项,6和8是比例内项 三、启思导疑1、同学们发现了一种新的判断两个比是否成比例的方法?(比值相等)2、这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢? (比是两个数相除,是一个算式;比例是两个比相等,是一个等式) 四、实践运用(一)填一填。1、在4:7=48:84中,4,7,48,84,叫比例的( ),其中4和84是比例的( )。7和48是比例的( )。2、用6,3,9,18组成一个比例是( )。(二)下列那几组的两个比可以组成比例?为什么?(1)4:5和8:20 (2)15:30和18:36(3)0.7:4.9和140:20 (4)1/3:1/9和1/6:1/8(三)按要求写一写。1、先写出比值是3的两个比,再组成比例。2、根据1.2×25=0.6×25写出两个比例式。 五、总结评价这节课我们学习了什么,你有什么收获?什么样的两个量成正比例关系? 自由小结【板书设计】:比例的认识12 :6 = 8 :46 :4 = 3 :2【教学反思】:比例的应用第1课时【教学目标】: 1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情感、价值观的发展。【教学重点】:使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。【教学难点】:利用比例的基本性质来解比例。【教学时间】:【教学过程】:一、旧知铺垫 1、前面我们学习了比例的基本性质,你能说说它的具体内容吗? 2、请你用比例的相关知识判断下列哪两个比可以组成比例,并且说明理由。5:7和8:13 1/2:1/3和1/4:1/6 3、 想一想,括号里该填几:14:( )=35:5 ( ):5=4:10二、导入新知 我们知道比例中共有四项,如果知道其中的任何三项,就可以求出比例中的另外一个未知项。求比例中的未知项,叫做解比例。这节课我们就一起来探究解比例的方法,大家对自己有信心吗?三、探索新知1.教学例题。呈现情境图,解决实际问题。(1)呈现情景图。(2)你如何理解4个玩具汽车换10本小人书?(3)尝试解答。学生尝试解答,教师巡视。(4)学生交流。(5)尝试用比例的方法解决问题。尝试解答。学生交流,形成方法。解:设14个玩具汽车可以换x本小人书。4:1014:x 4x14×10 4x140 x35答:14个玩具汽车可以换35本小人书。教师指出:求比例中的未知项,叫做解比例。板书:解比例。2、比较、小结。 (1)提问:解比例的方法和解方程的方法有哪些相同处和不同处?方法小结:解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X再依据比例的意义列出比例式然后根据比例的基本性质把比例转化为方程最后解方程)。其实,比例就是一种特殊的方程,不论在书写格式还是验算方法上他与解方程都是相同的。 三学以致用,巩固新知。1、解比例。5 :8 = X :40 X/9 = 7/3 1/2:X = 1/6:2/5 1.5:0.6=x:0.42.按下面的条件组成比例,并求未知数的值。(1)12和5的比等于3。6和X的比。(2)X和1/3的比等于4 :3。3、拓展延伸。(1)、在一个比例中,两个外项正好互为倒数,已知一个内项是3,另一个内项是多少?(2)、在一个比例中,两个内项的乘积是最小的质数,已知一个外项是2,另一个外项多少?四、课堂总结:(1)这节课主要学习了什么内容?什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。) (2)现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例) 五、作业。第20页 练一练1-3。【板书设计】:比例的应用解:设14个玩具汽车可以换x本小人书。4:1014:x 4x14×10 4x140 x35先根据问题设X再依据比例的意义列出比例式然后根据比例的基本性质把比例转化为方程最后解方程【教学反思】:第2课时【教学目标】:1、使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。2、经历比例基