欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    3.1 自由电子理论(1).pdf

    • 资源ID:89744831       资源大小:2.21MB        全文页数:51页
    • 资源格式: PDF        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    3.1 自由电子理论(1).pdf

    Chapter 3Free electrons in solidsProfileTodays lectureElectronAtomBindingBorn-Oppenheimer Approximation(1/2)EnkkValence BandValence BandValence BandConduction BandConduction BandConduction BandQuantum MechanicsClassical TheoryCrystal DynamicsFree Electron ModelEnergy BandsCrystal StructureAtoms movememtElectrons movementCrystal dynamicsElectron theoryFree electron theoryEnergy band theory IntroductionChapter 3 Free electrons in solids IntroductionChapter 3 Free electrons in solidsPhysics for computer science students:with emphasis on atomic and semiconductor physicsAcknowledgement:Chapter 3 Free electrons in solids3.1 Free electron model3.1.1 Drude Model-Classical Free Electron Model3.1.2 Sommerfeld Model-Quantum Mechanical Free Electron Model3.2 Heat capacity of free electron gas3.3 Transport properties of conductive electronsIndependent electron approximationFree electron approximationCollision assumptionRelaxation time approximationDrudeClassical Free Electron Model Independent electron approximationFree electron approximationNo collisionQuantum statistics:Fermi-Dirac DistributionSommerfeldQuantum Mechanical Free Electron ModelEnergy band theoryFree Electron Model+Periodical potential fieldDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM IntroductionChapter 3 Free electrons in solids3.1 Free electron model3.1.1 Drude Model-Classical Free Electron Model3.1.2 Sommerfeld Model-Quantum Mechanical Free Electron Model3.2 Heat capacity of free electron gas3.3 Transport properties of conductive electrons3.4 Electron emission and contacting voltage Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMUIRJOhms LawJ:Current density1:Resistivity:Conductivity:Electric field intensityDrude Model Failure of Drude ModelPaul Karl Ludwig DrudeDrude Model electronsThe Drude model of electrical conduction was proposed in 1900 by Paul Drudeto explain the transport properties of electrons in materials(especially metals).The model,which is an application of kinetic theory,assumes that themicroscopic behavior of electrons in a solid may be treated classically andlooks much like a pinball machine,with a sea of constantly jittering electronsbouncing and re-bouncing off heavier,relatively immobile positive ions.Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMAssumption of the electron gas:(1)Independent electron approximationNo electrostatic interaction and collision among free electrons(2)Free electron approximationNo electrostatic interaction between free electrons and ions(3)Collision assumptionVelocity of electrons after collision with ions only concerns with temperature,but not the velocity before collision(4)Relaxation time approximationRelaxation time is independent with the position and velocity of electronsFree electron gasDrude Model Failure of Drude ModelDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMWithout electric field,free e-moves randomly1/251131.2 10 m sec(120km sec)RMSBvk T mAt room temperature,No net current With electric field,things are differentvd:drift velocity(漂移速度漂移速度),vd0KFermi-Dirac distributionFind Fermi energy EFk distributionDensity of stateFind the electron number near the EFDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyU(x,t)U(x)i/(,)()eEtx tx222d()()2d()xExxmUxU(x)0a x()0,0(),0U xxaU xxa x222d2dEmx222d20dmEx2mEk sincosAkxBkx2()2kEm(0)cos00()sincos0BBaAkaBka0sin0BAkaInfinite Potential Well 222d0dkx()0,0 xxa xDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energysin0Aka sin0ka kan1,2,3,.n()sinnxAxa0 xa201adx2Aa2()sinnxxaa1,2,3,.n U(x)0a x 222sinnnxaaE1E1E12mEk 222d20dmExknasincosAkxBkxDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyU(x)0a x 2mEk 222d20dmExsin0Aka sincosAkxBkxkan1,2,3,.n kna22222nEEnma1,2,3,.n m,a,E,quantum effect strengthen nano-material22122Ema22222Ema1n 2n E1E1E1The energy of a particle in a box(black circles)and a free particle(grey line)both depend upon wavenumber.2()2kEmDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM.00,0Ux y zLUx y zL x y z 2222222(,)(,)2x y zEx y zmxyz,)()()()x y zxyz(U(x)0a x 222d20dmEx2()sinxkxa22222222nkEEnmma1,2,3,.n()0,0(),0U xxaU xxa xL222d()()()2dU xxExm x1n 2n E1E1E13D Infinite Potential Well Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energykna1D Infinite Potential Well 1D Infinite Potential Well Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM22222221()1()1()20()()()xyzmExxyyzzxyzkk ik jk l222kEm2222222221()1()1()()0()()()xyzxyzkkkxxyyzz2221()()xxkxx 2221()()yykyy 2221()()zzkzz L2222222(,)(,)2x y zEx y zmxyz222()()0 xxkxx222()()0yykyy222()()0zzkzz2222222()()()()()()2xyzExyzmxyz.00,0.,.Ux y zLUx y zL x y z Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energy2222()2xyzEkkkm0,()0;,()00,()0;,()00,()0;,()0 xxxLxyyyLyzzzLz()sinxxxAk xxxnkL()sinyyyAk yyynkL()sinzzzAk zzznkL,)()()()x y zxyz(1,2,3,.xn 1,2,3,.yn 1,2,3,.zn 222222222222()222()xxyzzyEkkkkmmmLnnn,1,2,3,.xyzn n n L2222222(,)(,)2x y zEx y zmxyzDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energy222()()0 xxkxx222()()0yykyy222()()0zzkzzBoundary conditionFind the characteristics of motion of the free electronsQuantized EnergyHow the energy levels are occupied by free electronsFermi-Dirac distributionFind Fermi energy EFFind the electron number near the EF1n 2n E1E1E10K0KDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyFermi-Dirac Distribution()()/()/111111llBFBllEEk TE Ek TlFeee Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyOccupancy Condition at T=0K-Classical theory222222()2xyzEnnnmL,1,2,3,.xyzn n n L2220()xyzE nnn22022EmLDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyOccupancy Condition at T=0K-Quantum mechanicallyPaulis Exclusion PrincipleDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyOccupancy Condition at T=0K-Quantum mechanicallyThe Fermi energy:the highest energy a fermion can take atabsolute zero temperature.Fermi-Dirac Distribution()()/()/111111llBFBllEEk TE Ek TlFeee Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energy()/1()1FBE Ek TF EeOccupancy Condition at T0K-Quantum mechanicallyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyOccupancy Condition at T=0K and T0K-Quantum mechanically1.Fermi Energy value?2.e-number near EF?Explain Find the characteristics of motion of the free electronsQuantized EnergyHow the energy levels are occupied by free electronsFermi-Dirac distributionFind Fermi energy EFFind the electron number near the EF1n 2n E1E1E1k distributionDensity of state0K0KDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergykzkykxkFThe radius of the Fermi sphere is called the Fermi wave vector kF222,xxyyzzknknknLLL 2()2FFkEmAt T=0K,Inside Fermi sphere,all orbits are occupied;Outside Fermi sphere,all orbits are empty.Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM22022EmLxyzkk ik jk l Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyCalculation of Fermi Energy(EF)at T=0K222200()xyzEnnnEn E,1,2,3,.xyzn n n 222222()22xyzkEkkkmmStates on the same sphere are degenerate statesFermi wave vector kFFermi sphere 2()2FFkEmDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyCalculation of Fermi Energy(EF)at T=0KDistribution density of k:(k)Fermi sphere()kVN knumberddddkdofd dnumber of electronsEach k2 electrons 222(2)ksLLS 214kSks222,xxyyzzknknknLLL ky=kx=0-112-23-31-12-2-33L 2L 22xnL2ynL2D3222(2)kvLLLV 318kVkv3DFV 33324386FFFkkVVkV3226FkNV323FkNnV22022/3()(3)22FFkEnmmEF0=5.84*10-38n2/3J 38Vk2()2FFkEm21/3(3)FknFermi-energy EF:The valance electron density n=N/V is 1.4021028m-322/3232.122FEneVm1/31230.746FNkV42.46 10FFBETKkComparison:For a conductor of a=4cm4112.3 10eVEDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMFermi wave vector kF:Fermi temperature TF:Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyCalculation of Fermi Energy(EF)at T=0KNumber of kNumber of e-Density of e-E.g.Find the characteristics of motion of the free electronsQuantized EnergyHow the energy levels are occupied by free electronsFermi-Dirac distributionFind Fermi energy EFFind the electron number near the EF1n 2n E1E1E1k distributionDensity of state0K0KDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyFind the characteristics of motion of the free electrons by quantum mechanicsQuantized EnergySchrodinger EquationHow the energy levels are occupied by free electronsFermi-Dirac distributionFind Fermi energy EFk distributionDensity of stateFind the electron number near the EF电子气能量eVCTEDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energy 3333244383223VVkZ Ekkkddd()dddZZkg EEkE3/21/222dd2()dd2ZkVmg EEkE3/2222C2VmkzkykxkF1/2()g EC EDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMDOS:the number of electronic energy states(orbits)per unit energy.-g(E)Density of state(DOS)Remember:In crystal dynamics,the density of states g()is defined as the number of oscillators(or k)per unit frequency interval.Each k state represents two possible electron states:one for spin up,the other for spin down,thus the total number of electronic states in a sphere of diameter k is:Density of state(DOS)222kEm Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energyd()dZg EE2ddEkkm22ddZVkk2mEk 1/2dd2km EE1/22322d2()4d24d(2)2VmEm EZkkkE3/21/222d2()d2ZVmg EEEDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMAnother Way to Calculate DOS3/2222C2Vm1/2()g EC E Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyFor a free electron gas in 3D,the density of states for free electrons increases with the increase of energy E.1Dd2()2 d4d2LZkkk 222d2d22()dd2ZLkL mLmg EEEkmE1/2()g EC E2D2d2()2d4d4SZkkkkk22dd()ddZkSkkS mmSg EEEkg(E)has no relationship with E or k3D3D22232d2()4d24d8VVkZkkkkkdk2222222222dd2()ddZVkkVkmmVkmVmEg EEEkDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMSituation of Orbits Occupied by Electrons Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energy1/2()g EC Eg(E)()()()N Ef E g E()f E()N E0()()dNg E f EETotal number of e-Define N(E)as Electron energy distribution functionN(E)dE=number of e-with energies between E and E+dEg(E)f(E)dE=number of e-with energies between E and E+dE()()()N Eg E f EDOS g(E):the number of electronic energy states(orbits)per unit energy.f(E):probability that an electronic energy state be occupied.T0KT=0KEFEFDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM1/2()g EC Eg(E)()()()N Ef E g E0()()dNg E f EETotal number of e-3/21/2222()2Vmg EEAnother method of getting Fermi energyT=0K003/21/203/2232300()()d(2)d(2)23FFEEFVVNf E g EEmEEmE2323220223322FNEnmVm222FFekEm1/321/3233FNknV Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMFind the characteristics of motion of the free electrons by quantum mechanicsQuantized EnergySchrodinger EquationHow the energy levels are occupied by free electrons0K0KFermi-Dirac distributionFind Fermi energy EFk distributionDensity of stateFind the electron number near the EF电子气能量eVCTE Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energyd()()dtEE NE g Ef EE005/21/23/20002dd=5FFEEFCC EE ECEEE5/200235.5FFCEEEN2/320232FNEmV322322VmCDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMTotal energy for electron gas T=0KAverage energy for free electronsAt T=0K,the average energy of a free electron is 60%of the Femi energy.Q:Is the result similar to that of classical theory?1/2()g EC Eg(E)()()()N Ef E g E0()()dNg E f EE00()dFEg EE03/223(2)3FVmE Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energy035tFENE0()()dNg E f EE()()dtEE g Ef EE()/01()d1FBE Ek Tg EEe3/2()/01de1FBE Ek TCEE0220351()512BFFk TNEEDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMTotal energy for electron gas T0K1/2()g EC Eg(E)()()()N Ef E g E22220000111212BFFFFFFk TTEEEEETFermi energyEF0 Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMFind the characteristics of motion of the free electrons by quantum mechanicsQuantized EnergySchrodinger EquationHow the energy levels are occupied by free electrons0K0KFermi-Dirac distributionFind Fermi energy EFk distributionDensity of stateFind the electron number near the EF电子气能量 Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyA.Piccard,E.Henriot,P.Ehrenfest,E.Herzen,Th.De Donder,E.Schrdinger,J.E.Verschaffelt,W.Pauli,W.Heisenberg,R.H.Fowler,L.Brillouin;B.P.Debye,M.Knudsen,W.L.Bragg,H.A.Kramers,P.A.M.Dirac,A.H.Compton,L.de Broglie,M.Born,N.Bohr;I.Langmuir,M.Planck,M.Skodowska-Curie,H.A.Lorentz,A.Einstein,P.Lang

    注意事项

    本文(3.1 自由电子理论(1).pdf)为本站会员(ho****ga)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开