欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题拔高练(解析版).docx

    • 资源ID:89761708       资源大小:2.71MB        全文页数:69页
    • 资源格式: DOCX        下载积分:9.99金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.99金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题拔高练(解析版).docx

    2023年高考数学重点专题三轮冲刺演练【一专三练】 专题04 概率统计与期望方差分布列大题拔高练-新高考数学复习分层训练(新高考通用)1(2023·广东广州·高三广东实验中学校考阶段练习)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立抗体指标值合计小于60不小于60有抗体没有抗体合计(1)填写下面的2×2列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关(单位:只)(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体(i)用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p;(ii)以(i)中确定的概率p作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n个人注射2次疫苗后产生抗体的数量为随机变量X试验后统计数据显示,当X =99时,P(X)取最大值,求参加人体接种试验的人数n参考公式:(其中为样本容量)0.500.400.250.150.1000.0500.0250.4550.7081.3232.0722.7063.8415.0242(2023春·广东惠州·高三校考阶段练习)北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如图数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40人的学校可以作为“基地学校”,现在从这10所学校中随机抽取3所,记为选出“基地学校”的个数,求的分布列和数学期望3(2023·广东广州·统考一模)为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为,各次答题结果互不影响.(1)求甲前3次答题得分之和为40分的概率;(2)记甲第i次答题所得分数的数学期望为.写出与满足的等量关系式(直接写出结果,不必证明):若,求i的最小值.4(2023·广东湛江·统考一模)某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:),经统计得到下面的频率分布直方图:(1)由频率分布直方图估计抽检样本关键指标的平均数和方差(用每组的中点代表该组的均值)(2)已知这台设备正常状态下生产零件的关键指标服从正态分布,用直方图的平均数估计值作为的估计值,用直方图的标准差估计值s作为估计值(i)为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备下面是某个生产周期中抽测的10个零件的关键指标:0.81.20.951.011.231.121.330.971.210.83利用和判断该生产周期是否需停止生产并检查设备(ii)若设备状态正常,记X表示一个生产周期内抽取的10个零件关键指标在之外的零件个数,求及X的数学期望参考公式:直方图的方差,其中为各区间的中点,为各组的频率参考数据:若随机变量X服从正态分布,则,5(2023·江苏·统考一模)某小区有居民2000人,想通过验血的方法筛查出乙肝病毒携带者,为此需对小区全体居民进行血液化验,假设携带病毒的居民占a%,若逐个化验需化验2000次.为减轻化验工作量,随机按n人一组进行分组,将各组n个人的血液混合在一起化验,若混合血样呈阴性,则这n个人的血样全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对每个人再分别单独化验一次.假设每位居民的化验结果呈阴性还是阳性相互独立.(1)若,试估算该小区化验的总次数;(2)若,每人单独化验一次花费10元,n个人混合化验一次花费元.求n为何值时,每位居民化验费用的数学期望最小.(注:当时,)6(2023·江苏·统考一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.求选到的袋子为甲袋的概率,将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.7(2023·辽宁沈阳·统考一模)2022年12月初某省青少年乒乓球培训基地举行了混双选拔赛,其决赛在韩菲/陈宇和黄政/孙艺两对组合间进行,每场比赛均能分出胜负已知本次比赛的赞助商提供了10000元奖金,并规定:若其中一对赢的场数先达到4场,则比赛终止,同时这对组合获得全部奖金;若比赛意外终止时无组合先赢4场,则按照比赛继续进行各自赢得全部奖金的概率之比给两对组合分配奖金已知每场比赛韩菲/陈宇组合赢的概率为,黄政/孙艺赢的概率为,且每场比赛相互独立(1)若在已进行的5场比赛中韩菲/陈宇组合赢3场、黄政/孙艺组合赢2场,求比赛继续进行且韩菲/陈宇组合赢得全部奖金的概率;(2)若比赛进行了5场时终止(含自然终止与意外终止),则这5场比赛中两对组合之间的比赛结果共有多少不同的情况?(3)若比赛进行了5场时终止(含自然终止与意外终止),设,若赞助商按规定颁发奖金,求韩菲/陈宇组合获得奖金数X的分布列8(2023·江苏·二模)为促进经济发展,某地要求各商场采取多种举措鼓励消费商场在春节期间推出“你摸球,我打折”促销活动,门口设置两个盒子,甲盒内有大小相同的个红球和个黑球,乙盒内有大小相同的个红球和个黑球,购物满一定金额的顾客可以从甲、乙两个盒内各任取个球具体规则如下:摸出个红球记为一等奖,没有红球记为二等奖,个红球记为三等奖,个红球记为鼓励奖.(1)获得一、二、三等奖和鼓励奖的折扣率分别为折、折、折和折记随机变量为获得各奖次的折扣率,求随机变量的分布列及期望;(2)某一时段内有人参加该促销活动,记随机变量为获得折及以下资格的人数,求9(2023·辽宁·哈尔滨三中校联考一模)某学校号召学生参加“每天锻炼1小时”活动,为了了解学生参与活动的情况,随机调查了100名学生一个月(30天)完成锻炼活动的天数,制成如下频数分布表:天数0,5(5,10(10,15(15,20(20,25(25,30人数4153331116(1)由频数分布表可以认为,学生参加体育锻炼天数X近似服从正态分布,其中近似为样本的平均数(每组数据取区间的中间值),且,若全校有3000名学生,求参加“每天锻炼1小时”活动超过21天的人数(精确到1);(2)调查数据表明,参加“每天锻炼1小时”活动的天数在(15,30的学生中有30名男生,天数在0,15的学生中有20名男生,学校对当月参加“每天锻炼1小时”活动超过15天的学生授予“运动达人”称号.请填写下面列联表:性别活动天数合计0,15(15,30男生女生合计并依据小概率值的独立性检验,能否认为学生性别与获得“运动达人”称号有关联.如果结论是有关联,请解释它们之间如何相互影响.附:参考数据:;.0.10.050.010.0050.0012.7063.8416.6357.87910.82810(2023·河北邢台·校联考模拟预测)为弘扬体育精神,营造校园体育氛围,某校组织“青春杯”3V3篮球比赛,甲、乙两队进入决赛规定:先累计胜两场者为冠军,一场比赛中犯规4次以上的球员在该场比赛结束后,将不能参加后面场次的比赛在规则允许的情况下,甲队中球员都会参赛,他上场与不上场甲队一场比赛获胜的概率分别为和,且每场比赛中犯规4次以上的概率为(1)求甲队第二场比赛获胜的概率;(2)用表示比赛结束时比赛场数,求的期望;(3)已知球员在第一场比赛中犯规4次以上,求甲队比赛获胜的概率11(2023·河北衡水·河北衡水中学校考三模)某社区对55位居民是否患有新冠肺炎疾病进行筛查,已知随机一人其口拭子核酸检测结果呈阳性的概率为2%,且每个人的口拭子核酸是否呈阳性相互独立.(1)假设该疾病患病的概率是0.3%,且患病者口拭子核酸呈阳性的概率为98%,设这55位居民中有一位的口拭子核酸检测呈阳性,求该居民可以确诊为新冠肺炎患者的概率;(2)根据经验,口拭子核酸检测采用分组检测法可有效减少工作量,具体操作如下:将55位居民分成若干组,先取每组居民的口拭子核酸混在一起进行检测,若结果显示阴性,则可断定本组居民没有患病,不必再检测;若结果显示阳性,则说明本组中至少有一位居民患病,需再逐个进行检测,现有两个分组方案:方案一:将55位居民分成11组,每组5人;方案二:将55位居民分成5组,每组11人,试分析哪一个方案的工作量更少?参考数据:,.12(2023·福建福州·统考二模)脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17(1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计(结果保留整数)(2)假设全体参与者的脂肪含量为随机变量X,且XN(17,2),其中2近似为(1)中计算的总样本方差现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率附:若随机变量×服从正态分布N(,2),则P(-X+0.6827,P(-2X+2)0.9545,4.7,4.8,0.1586530.00413(2023·山东青岛·统考一模)今天,中国航天仍然迈着大步向浩瀚宇宙不断探索,取得了举世瞩目的非凡成就某学校为了解学生对航天知识的知晓情况,在全校学生中开展了航天知识测试(满分100分),随机抽取了100名学生的测试成绩,按照,分组,得到如下所示的样本频率分布直方图:(1)根据频率分布直方图,估计该校学生测试成绩的中位数;(2)用样本的频率估计概率,从该校所有学生中随机抽取10名学生的成绩,用表示这10名学生中恰有k名学生的成绩在上的概率,求取最大值时对应的k的值;(3)从测试成绩在的同学中再次选拔进入复赛的选手,一共有6道题,从中随机挑选出4道题进行测试,至少答对3道题者才可以进入复赛现有甲、乙两人参加选拔,在这6道题中甲能答对4道,乙能答对3道,且甲、乙两人各题是否答对相互独立记甲、乙两人中进入复赛的人数为,求的分布列及期望14(2023·山东潍坊·统考模拟预测)某校举行“强基计划”数学核心素养测评,要求以班级为单位参赛,最终高三一班(45人)和高三二班(30人)进入决赛决赛规则如下:现有甲、乙两个纸箱,甲箱中有4个选择题和2个填空题,乙箱中有3个选择题和3个填空题,决赛由两个环节组成,环节一:要求两班级每位同学在甲或乙两个纸箱中随机抽取两题作答,作答后放回原箱并分别统计两班级学生测评成绩的相关数据;环节二:由一班班长王刚和二班班长李明进行比赛,并分别统计两人的测评成绩的相关数据,两个环节按照相关比赛规则分别累计得分,以累计得分的高低决定班级的名次(1)环节一结束后,按照分层抽样的方法从两个班级抽取20名同学,并统计每位同学答对题目的数量,统计数据为:一班抽取同学答对题目的平均数为1,方差为1;二班抽取同学答对题目的平均数为1.5,方差为0.25,求这20人答对题目的均值与方差;(2)环节二,王刚先从甲箱中依次抽取了两道题目,答题结束后将题目一起放入乙箱中,然后李明再抽取题目,已知李明从乙箱中抽取的第一题是选择题,求王刚从甲箱中取出的是两道选择题的概率15(2023·山东聊城·统考一模)某中学在高一学生选科时,要求每位学生先从物理和和历史这两个科目中选定一个科目,再从思想政治、地理、化学、生物这四个科目中任选两个科目选科工作完成后,为了解该校高一学生的选科情况,随机抽取了部分学生作为样本,对他们的选科情况统计后得到下表:思想政治地理化学生物物理类100120200180历史类1201406080(1)利用上述样本数据填写以下列联表,并依据小概率值的独立性检验,分析以上两类学生对生物学科的选法是否存在差异科类生物学科选法选不选合计物理类历史类合计(2)假设该校高一所有学生中有的学生选择了物理类,其余的学生都选择了历史类,且在物理类的学生中其余两科选择的是地理和化学的概率为,而在历史类的学生中其余两科选择的是地理和化学的概率为若从该校高一所有学生中随机抽取100名学生,用表示这100名学生中同时选择了地理和化学的人数,求随机变量的均值附:0.10.050.0010.0050.0012.7063.8416.6357.87910.82816(2023·湖北武汉·统考模拟预测)口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.(1)记总的抽取次数为X,求E(X);(2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y,求E(Y)并从实际意义解释E(Y)与(1)中的E(X)的大小关系.17(2023·湖北·统考模拟预测)某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示(1)根据频率分布直方图,试求样本平均数的估计值;(2)若所有考生的初试成绩X近似服从正态分布,其中为样本平均数的估计值,试估计初试成绩不低于88分的人数;(3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩已知某考生进入复试,他在复试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响记该考生的复试成绩为Y,求Y的分布列及均值附:若随机变量X服从正态分布,则:,18(2023·湖北武汉·华中师大一附中校联考模拟预测)某地区区域发展指数评价指标体系基于五大发展理念构建,包括创新发展、协调发展、绿色发展、开放发展和共享发展5个一级指标该地区区域发展指数测算方法以2015年作为基期并设指数值为100,通过时序变化,观察创新发展、协调发展、绿色发展、开放发展和共享发展5个分领域指数值的变动趋势分别计算创新发展、协调发展、绿色发展、开放发展和共享发展5个分指数,然后合成为该地区区域发展总指数,如下图所示若年份x(2015年记为,2016年记为,以此类推)与发展总指数y存在线性关系(1)求年份x与发展总指数y的回归方程;(2)若规定发展总指数大于115的年份为和谐发展年,和谐发展年中发展总指数低于130的视为良好,记1分,发展总指数大于130的视为优秀,记2分,从和谐发展年中任取三年,用X表示赋分之和,求X的分布列和数学期望参考公式:回归方程,其中,19(2023春·江苏南京·高三南京师范大学附属中学江宁分校校联考阶段练习)某学校为了了解高一学生安全知识水平,对高一年级学生进行“消防安全知识测试”,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为“合格”若该校“不合格”的人数不超过总人数的,则该年级知识达标为“合格”;否则该年级知识达标为“不合格”,需要重新对该年级学生进行消防安全培训现从全体高一学生中随机抽取10名,并将这10名学生随机分为甲、乙两个组,其中甲组有6名学生,乙组有4名学生甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6(题中所有数据的最后结果都精确到整数)(1)求这10名学生测试成绩的平均分和标准差;(2)假设高一学生的知识测试成绩服从正态分布将上述10名学生的成绩作为样品,用样本平均数作为的估计值,用样本标准差作为的估计值利用估计值估计:高一学生知识达标是否“合格”?(3)已知知识测试中的多项选择题中,有4个选项小明知道每道多项选择题均有两个或三个正确选项但根据得分规则:全部选对的得5分,部分选对的得2分,有选错的得0分这样,小明在做多项选择题时,可能选择一个选项,也可能选择两个或三个选项,但不会选择四个选项假设小明在做该道多项选择题时,基于已有的解题经验,他选择一个选项的概率为,选择两个选项的概率为,选择三个选项的概率为已知该道多项选择题只有两个正确选项,小明完全不知道四个选项的正误,只好根据自己的经验随机选择记表示小明做完该道多项选择题后所得的分数求的分布列及数学期望附:个数的方差;若随机变量服从正态分布,则,20(2023春·湖南长沙·高三长沙一中校考阶段练习)某学校为了弘扬中华传统文化,组织开展中华传统文化活动周,活动周期间举办中华传统文化知识竞赛活动,以班级为单位参加比赛,每班通过中华传统文化知识竞答活动,择优选拔5人代表班级参加年级比赛.年级比赛分为预赛与决赛二阶段进行,预赛阶段的赛制为:将两组中华传统文化的们答题放在甲、乙两个纸箱中,甲箱有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个班级代表队在甲或乙两个纸箱中随机抽取两题作答.每个班级代表队先抽取一题作答,答完后试题不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个试题放回原纸箱中.(1)若1班代表队从甲箱中抽取了2个试题,答题结束后错将题目放入了乙箱中,接着2班代表队答题,2班代表队抽取第一题时,从乙箱中抽取试题.已知2班代表队从乙箱中取出的是选择题,求1班代表队从甲箱中取出的是2个选择题的概率;(2)经过预赛,成绩最好的6班代表队和18班代表队进入决赛,决赛采用成语接龙的形式进行,采用五局三胜制,即两班代表队中先胜三局的代表队赢得这场比赛,比赛结束.已知第一局比赛6班代表队获胜的概率为,18班代表队胜的概率为,且每一局的胜者在接下来一局获胜的概率为,每局必分胜负.记比赛结束时比赛局数为随机变量X,求随机变量X的数学期望.21(2023春·湖南·高三校联考阶段练习)某学校食堂中午和晩上都会提供两种套餐(每人每次只能选择其中一种),经过统计分析发现:学生中午选择类套餐的概率为,选择类套餐的概率为;在中午选择类套餐的前提下,晩上还选择类套餐的概率为,选择类套餐的概率为;在中午选择类套餐的前提下,晩上选择类套餐的概率为,选择类套餐的概率为.(1)若同学甲晩上选择类套餐,求同学甲中午也选择类套餐的概率;(2)记某宿舍的4名同学在晩上选择类套餐的人数为,假设每名同学选择何种套餐是相互独立的,求的分布列及数学期望.22(2023·湖南·校联考模拟预测)基础学科招生改革试点,也称强基计划,强基计划是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.聚焦高端芯片与软件智能科技新材料先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域.某校在一次强基计划模拟考试后,从全体考生中随机抽取52名,获取他们本次考试的数学成绩(x)和物理成绩(y),绘制成如图散点图:根据散点图可以看出y与x之间有线性相关关系,但图中有两个异常点A,B.经调查得知,A考生由于重感冒导致物理考试发挥失常,B考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计的值:,其中分别表示这50名考生的数学成绩物理成绩,2,50,y与x的相关系数.(1)若不剔除A,B两名考生的数据,用52组数据作回归分析,设此时y与x的相关系数为.试判断与r的大小关系(不必说明理由);(2)求y关于x的线性回归方程(系数精确到0.01),并估计如果B考生加了这次物理考试(已知B考生的数学成绩为125分),物理成绩是多少?(精确到0.1)附:线性回归方程中:.23(2023·湖南常德·统考一模)某水表制造有限公司,是一家十分优质的水表制造公司,该公司有3条水表表盘生产线.(1)某检验员每天从其中的一条水表表盘生产线上随机抽取100个表盘进行检测,根据长期生产经验,可以认为该条生产线正常状态下生产的水表表盘尺寸服从正态分布N(,).记X表示一天内抽取的100个表盘中其尺寸在之外的个数,求P及X的数学期望;(2)该公司的3条水表表盘生产线其次品率和生产的表盘所占比例如下表:生产线编号次品率所占比例10.0235%20.0150%30.0415%现从所生产的表盘中随机抽取一只,若已知取到的是次品,试求该次品分别由三条生产线所生产的概率,并分析该次品来自哪条生产线的可能性最大(用频率代替概率).附:若随机变量Z服从正态分布N(),则,24(2023·湖南邵阳·统考二模)为响应习近平总书记“全民健身”的号召,促进学生德智体美劳全面发展,某校举行校园足球比赛根据比赛规则,淘汰赛阶段,参赛双方有时需要通过“点球大战”的方式决定胜负“点球大战”的规则如下:两队各派5名队员,双方轮流踢点球,累计进球个数多者胜;如果在踢满5轮前,一队的进球数已多于另一队踢满5轮最多可能射中的球数,则不需要再踢(例如:第4轮结束时,双方“点球大战”的进球数比为,则不需要再踢第5轮);若前5轮“点球大战”中双方进球数持平,则从第6轮起,双方每轮各派1人踢点球,若均进球或均不进球,则继续下一轮,直到出现一方进球另一方不进球的情况,进球方胜出假设每轮点球中进球与否互不影响,各轮结果也互不影响(1)假设踢点球的球员等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确,左右两边将球扑出的可能性为,中间方向扑出的可能性为若球员射门均在门内,在一次“点球大战”中,求门将在前4次扑出点球的个数的分布列和数学期望(2)现有甲、乙两队在淘汰赛中相遇,需要通过“点球大战”来决定胜负设甲队每名队员射进点球的概率均为,乙队每名队员射进点球的概率均为,若甲队先踢,求甲队恰在第4轮取得胜利的概率25(2023秋·浙江宁波·高三期末)甲、乙两位棋手,与同一台智能机器人进行国际象棋比赛,相互独立,互不影响,记分规则如下:在一轮比赛中,如果甲赢而乙输,则甲得1分;如果甲输而乙赢,则甲得分;如果甲和乙同时赢或同时输,则甲得0分.设甲赢机器人的概率为0.6,乙赢机器人的概率0.5.记甲在一轮比赛中的得分记为X,在两轮比赛中的得分为Y.(1)若甲单独与机器人进行三次比赛,求甲恰有两次赢的概率;(2)求X的分布列;(3)求Y的均值.26(2023·浙江嘉兴·统考模拟预测)糟蛋是新鲜鸭蛋(或鸡蛋)用优质糯米糟制而成,是中国别具一格的特色传统美食,以浙江平湖糟蛋、陕州糟蛋和四川宜宾糟蛋最为著名.平湖糟蛋采用优质鸭蛋、上等糯米和酒糟糟渍而成,经过糟渍蛋壳脱落,只有一层薄膜包住蛋体,其蛋白呈乳白色,蛋黄为橘红色,味道鲜美.糟蛋营养丰富,每百克中约含蛋白质15.8克、钙24.8克、磷11.1克、铁0.31克,并含有维持人体新陈代谢必须的18种氨基酸.现有平湖糟蛋的两家生产工厂,产品按质量分为特级品、一级品和二级品,其中特级品和一级品都是优等品,二级品为合格品.为了比较两家工厂的糟蛋质量,分别从这两家工厂的产品中各选取了200个糟蛋,产品质量情况统计如下表:优等品合格品合计特级品一级品二级品工厂甲1007525200工厂乙1203050200合计22010575400(1)从400个糟蛋中任取一个,记事件表示取到的糟蛋是优等品,事件表示取到的糟蛋来自于工厂甲.求;(2)依据小概率值的独立性检验,从优等品与合格品的角度能否据此判断两家工厂生产的糟蛋质量有差异?附:参考公式:,其中.独立性检验临界值表:0.100.050.0100.0050.0012.7063.8416.6357.87910.82827(2023春·浙江宁波·高三校联考阶段练习)据第19届亚运会组委会消息,杭州亚运会将于2023年9月23日至10月8日举行,为此,某校开展了青少年亚运会知识问答竞赛,有400名学生参赛,竞赛成绩所得分数的分组区间为,由此得到如下的频数统计表:分数区间性别男生/名10707545女生/名10904555(1)若某学生得分不低于80分则认为他亚运会知识掌握良好,若某学生得分低于80分则认为他亚运会知识掌握一般,那么是否有95%的把握认为该校学生对亚运会知识的掌握情况与性别有关?(2)利用对不同分数段进行分层抽样的方式从参赛学生中随机抽取20名学生作进一步调研.(i)从这20名学生中依次再抽取3名进行调查分析,求在第一次抽出的1名学生分数在区间内的条件下,后两次抽出的2名学生分数都在内的概率;(ii)从这20名学生中再任取3名进行调查分析,记取出的3人中分数在90,100内的人数为,求的分布列和数学期望.附:0.100.050.0102.7063.8416.63528(2023·浙江·校联考三模)大坝是一座具有灌溉、防洪、发电、航运、养殖和游览等综合效益的大型水利枢纽工程为预测渗压值和控制库水位,工程师在水库选取一支编号为的渗压计,随机收集个该渗压计管内水位和水库水位监测数据:样本号总和水库水位渗压计管内水位并计算得,(1)估计该水库中号渗压计管内平均水位与水库的平均水位;(2)求该水库号渗压计管内水位与水库水位的样本相关系数(精确到);(3)某天雨后工程师测量了水库水位,并得到水库的水位为利用以上数据给出此时号渗压计管内水位的估计值附:相关系数,29(2023·浙江温州·统考二模)在一次全市的联考中,某校高三有100位学生选择“物化生”组合,100位学生选择“物化地”组合,现从上述的学生中分层抽取100人,将他们此次联考的化学原始成绩作为样本,分为6组:,得到如图所示的频率分布直方图(1)求直方图中的值;(2)在抽取的100位学生中,规定原始成绩不低于80分为“优秀”,低于80分为“不够优秀",请将下面的列联表补充完整,并判断是否有的把握认为成绩是否优秀与所选的组合有关?优秀不够优秀总计“物化生”组合40“物化地”组合总计(3)浙江省高考的选考科目采用等级赋分制,等级赋分的分差为1分,具体操作步骤如下:第一步:将原始成绩从高到低排列,按人数比例划分为20个赋分区间第二步:对每个区间的原始成绩进行等比例转换,公式为:其中分别是该区间原始成绩的最低分最高分;分别是该区间等级分的最低分最高分;为某考生原始成绩,为转换结果第三步:将转换结果四舍五入,确定为该考生的最终等级分本次联考采用浙江选考等级赋分制,已知全市所有的考生原始成绩从高到低前的考生被划分至的赋分区间,甲乙两位考生的化学原始成绩分别为,最终的等级分为9899试问:本次联考全市化学原始成绩的最高分是否可能是91分?请说明理由附:,其中0.100.050.010.0012.7063.8416.63510.82830(2023·江苏南通·二模)我国风云系列卫星可以监测气象和国土资源情况某地区水文研究人员为了了解汛期人工测雨量x(单位:dm)与遥测雨量y(单位:dm)的关系,统计得到该地区10组雨量数据如下:样本号i12345678910人工测雨量xi5.387.996.376.717.535.534.184.046.024.23遥测雨量yi 5.438.076.576.147.955.564.274.156.044.49| xi - yi |0.050.080.20.570.420.030.090.110.020.26并计算得(1)求该地区汛期遥测雨量y与人工测雨量x的样本相关系数(精确到0.01),并判断它们是否具有线性相关关系;(2)规定:数组(xi ,yi)满足| xi - yi | < 0.1为“类误差”;满足0.1| xi - yi | < 0.3为“类误差”;满足| xi - yi |0.3为“类误差”为进一步研究,该地区水文研究人员从“类误差”、“类误差”中随机抽取3组数据与“类误差”数据进行对比,记抽到“类误差”的数据的组数为X,求X的概率分布与数学期望附:相关系数2023年高考数学重点专题三轮冲刺演练【一专三练】 专题04 概率统计与期望方差分布列大题拔高练-新高考数学复习分层训练(新高考通用)1(2023·广东广州·高三广东实验中学校考阶段练习)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立抗体指标值合计小于60不小于60有抗体没有抗体合计(1)填写下面的2×2列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关(单位:只)(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体(i)用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p;(ii)以(i)中确定的概率p作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n个人注射2次疫苗后产生抗体的数量为随机变量X试验后统计数据显示,当X =99时,P(X)取最大值,求参加人体接种试验的人数n参考公式:(其中为样本容量)0.500.400.250.150.1000.0500.0250.4550.7081.3232.0722.7063.8415.024【答案】(1)表格见解析,可以认为(2)(i);(ii)109或110【分析】(1)根据独立性检验的方法求解即可;(2)根据二项分布的概率公式列出不等式即可求解.【详解】(1)由频率分布直方图,知200只小白鼠按指标值分布为:在内有(只);在内有(只);在内有(只);在内有(只),在内有(只)由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有只,所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只抗体指标值合计小于60不小于60有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联根据列联表中数据,得,根据的独立性检验,推断不成立,即认为注射疫苗后小白鼠产生抗体与指标值不小于60有关,此推断犯错误的概率不大于0.05.(2)(i)令事件A=“小白鼠第一次注射疫苗产生抗体”,事件B=“小白鼠第二次注射疫苗产生抗体,事件C=“小白鼠注射2次疫苗后产生抗体”,记事件A,B,C发生的概率分别为,则,所以一只小白鼠注射2次疫苗后产生抗体的概率,(ii)由题意,知随机变量,因为最大,所以,解得 是整数,所以或,接受接种试验的人数为109或1102(2023春·广东惠州·高三校考阶段练习)北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如图数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40

    注意事项

    本文(2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题拔高练(解析版).docx)为本站会员(学****享)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开