欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    河南省2022-2023学年高三年级TOP二十名校四月冲刺考(一)理科数学含答案.pdf

    • 资源ID:89762506       资源大小:1.33MB        全文页数:10页
    • 资源格式: PDF        下载积分:9.99金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.99金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    河南省2022-2023学年高三年级TOP二十名校四月冲刺考(一)理科数学含答案.pdf

    2022-2023 f+H=+r&roP-+&ElE l+FJ(-)H=4uillry+ifr#ilEiFri2.E ffittt,4+.*,!jW H-fr Yl&.IEt mq EE E6 E-F f E E A!fn E t 3.Affi A*A$Ef r.,S44r4 6 r.fiN.4.*)fr#fr.fr,w4iiltfi sE F-+tE-.jlEffiE:#E*12 4rE,l4r 5 1,ft 60 t).6EHE:&HtJ.EtrdrElA S f!tr tilEE+,R-rEEffs.E*E Ct(x-t)2+(y-2)?=5,E CEt-lE r?+y2=r a1lB-HtE,t,+&t I 6!E.EI C5 c lA A,B ffi,fi,E g zlcB&trf,I cc I=A.I B.a c.$D.2e.32 A ilL*ffi.+rE fi 5 ry,z 2 4+L&+trli+ft dbffi#,rll*&+mEfl&#-*?lL/H+frft-*.tu*,6#rt#Fffi ErS n,#fi&Et)lv-+&+*6,t+r0,qq rlt a sT.fifi ffi.Btr6iLA&+5+tL*fi&6!&*fr h+,E fi iL*tffi+5 LtLa.*.Mffitffis 4 J+,#!rH+E(#e,E s#5$tarl w*w L*&+)wE hA.24B.25c.26D.27rc.efrfifrXflciffi,E.,iF a.=a,flFA a,t=dn r,E-a,=a,=1,a,=-3,an-4,a,ft at a,ffi41144.#ElEt rEfl s 64&JtH s,I|j s=A,OB.Ic.2D.3t.tetd A=,lz_,o,4=r-r,o,r,2t,nt)AnB=A.-lB.1c.0,12.t AF*.z ffi E t z+i t=t z-i t,4 EY Ei ts xtD 6!.H,ir(,y),A-r=0B v=oC.x+y=grr.EfrE6 o,o 69,L,TIRE+&ttflilh r,fi,Ht h,rPE a 6fi816 o,o ffifr*&*,&.a&fi E 6r1+AE&EIEitRt s,flllA.5 in-r B-t,S BfEtHt(n+2r)iB.5 rrn-rE-f,s nctcr(4td!+:qfn 2(R-r)C.Y hR-r Fl,S 6tJ&tEt(R+2r),?D.ho)fift,Rt r,IEAt t,F,A(3,2,1i)E c tHA dr 5,4+,HB,|ll#=A.IB.Ec.JD.27.EEl#ABCD-A.B.C tD|+,M,N,p hfrlh AtB,A,c t,A,6!+.fi,fllTrq#it+ffiEAtEB.YffiMNP/YfrBCPD.lFEMNP.L+MAIBDlH=sf+ffi+ifr6(ffirfr*48)lA,FiA.MN/AD,C.MN LCDS.r=*3C.r=a2,.o.*=TA.abcB,bcaC.cabD.cba=.itr*E:*E*a rhE,E4rE s tl,*20 t|.t:.EfirE a=(I,z),b=(-2,-t),5,fi-t5 a-t*HB91FiJE c=A.t fr fr*,r(,)=illl I i;-l;.0,u m a tffi,fi,B)tnJtl ffi*,#Jrr*tr,fi P,AP r8P.id/4,8 ffi,H,Eg ffiM)trhfrrllt,r,flr.jl+1=2 2 xt$taon-*ffiii#,tTR a,#8*,AP fiNFtrJ t,E A h PQ fr=+tlR,flll c i!H,t+,f,.-=-16.Xfi+tr&f+Elffi flt&ElmHEl tnB t Ffi E,AC 5 8D Alt,HEEilM AB1D!6fl.EEfr Bc h+JK.EhE,ffi*tl AB frtJrtrfr t,ABEHEE&,R B*41,E#dldffitr,fFqtffiAD Tfl C D E Tf trffi,f+fr,&14 AD fr CD#J*H h 45,AD 69Ktr8 C D#J Ktr.#JA Ifi.iiAN2,*&E&F,B,D 2H trN*-&fi ffiIT BD,WJIF ffiffi BD Bi KE F!&)EE h-DDlH=q#Iff+ifr#(ffi2fr.n4E)=ffi*E:*70 r)trE&5 U t+ltffi,iiEEntE*ilf&5.gE 17-2t E*e+E+fitE+ltlaa t+t H 22.23 trrft+E,#48ffi E*fF#.(-)S#E:*eo i).n.(.$.AtEffih rz ll)t frWirla.l,+*WrqIb.ffift b=a,+a.,b|=-3,b2+b1=-12.(I)iltlll so,*o,.,=2;(z)#.1h4#fi4,*o ElBt n 4fi.t8.(4zlrElffij|12 ji)tYi+EeSi,S W&.*W trt+.Htll&05 2 fr 4+,&t5Etr rtr ts U+,S dt5,H.Efl 694s%,Hffi#+A fr ilMWWW.,Tffi A+i+XE&fi&rE LfEryrfrfr 6!4tr+fl E,ffi Ul,E&isflfiTfrffi:tt4+,I2.,4345446,Silt5ffifjl,6l5t554MWfrWy51015l9243l)li+H-14 Z i=z 042,x,y,=1 2a1.i-l i=l(r)*fiEeH,EIH#&1IF.4Uay 5,i9je6.&ffi#+Bfi+tsH4fi#,*y j(trffi*,&tsl1fiEt(2)tfl#Ffi.ut*&.EtqfiE*|H.X 5,6+ffi+ffiVJfr&sgfi ffi E i,+5ffiMMWfr W.fi H*E y frlti bt&.#tffi,?r i-y r D0)itAEAt A,P h c t-.f;,o tF,H,lP,4 t=tpot,ADLAPo=e0,LAP0 6imRt l.(I)*ffiEI CffiE&(2)yt.B r c ffJE$rt.,il,5.(I.0)-E fjt+.4i,).J o il.J 89 t 5 c I i M,/v ffi.F.,EgA 0tarr.LMAB=tan L NBA.2r.(6.lffiffihtz)l)Efi&fif(r)=rln r-otz trf(x)/1fQ)ffigffi.(r)itit,r(,)B!4)Et&-2(z)#H*.r=i 5 fr*,y=fQ)H ffi+tH,*fi4rtrilE E.(:)iEtE:*r0 t,E+*-I n.23 E+Eit-E.tf,S,tu R rff,fl|J&Ff tr HnF-Ei.+r.22.|&E4-4,t*ffitr.,54l&*-E1 0o h)&Hfr Mbt 4,oy+,H*,t alr 4*n efr;=l,1;r,h w),fr*.c,ffi wh&z,=,.,:-r,x*fi)tll s&m.fi o t&,H,fr tr*ffi t&fi ene+ffi x,fi a c,fi&.4.&rfiE.h p=r.(2)#H9t t 5 c,+A,B ffi,fi,5 c,L+c,D ffi,H,#I oA I=I oB t,r I oC t=t oD t,*rcDr.23.lfrl6;4-s ttr+rtE#l(lo r)t fr a,b fil7.h,fliffi7f,a1+b?=t.i1f4E(l)lal+l6lr(,l+l.l5l=1lH=4+1ffi+iil6(ffi3fr*48)llH=Ef+ffi+H#(H4fr,+4 E)I【高三理科数学参考答案(第 页共 页)】下学年高三年级 二十名校四月冲刺考(一)高三理科数学参考答案 【答案】【解析】(),则 故选 【答案】【解析】设复数 ,在复平面内对应的点分别为 (,),(,),(,),则 的几何意义是 到 的距离和 到 的距离相等,则 在复平面内对应的点(,)满足 故选 【答案】【解析】()令 ,则 (),即 (),故对称轴可以是直线 故选 【答案】【解析】由函数模型 (),当 时,(),可得 (),即 设血液尿酸浓度达到正常值时,摄入天数为 ,则 (),即 ,可得 ,即 ,则 ,故选 【答案】【解析】依题意,每个兴趣小组采集 处水样,每处水样至少有 个兴趣小组进行采集,可分为两步 第一步,甲组进行采样,有 种方法;第二步,乙组进行采样,有 种方法,所以共有 种方法 故选 【答案】【解析】由 (,槡)在 上,得 ,解得 ,则 (,),直线 的斜率 槡 槡,倾斜角为 如图,过点 作 的垂线,垂足为 由抛物线的定义可知 在 中,故选 【答案】【解析】在 中,因为,分别为 ,的中点,所以 ,又 ,所以 ,故 选项正确;同理,则 平面 ,平面 ,所以【高三理科数学参考答案(第 页共 页)】平面 平面 ,故 选项正确;因为 ,所以 ,故 选项正确;取 的中点 ,则 即为二面角 的平面角,易知 ,则平面 与平面 不垂直,又平面 平面 ,故平面 与平面 不垂直,故 选项错误 故选 【答案】【解析】在 中,槡 如图,当公共弦 最大,即 为圆 的直径时,最大 此时在 中,槡,槡 故选 【答案】【解析】设选择与甲进行比赛且获胜的业余棋手人数为 ,选择与乙进行比赛且获胜的业余棋手人数为 ;设选择与甲进行比赛的业余棋手人数为 ,则选择与乙进行比赛的业余棋手人数为 所有可能的取值为,则 ,(),();所有可能的取值为,则 ,(),(),获胜的业余棋手总人数的期望 ()()(),解得 故选 【答案】【解析】由 ,是 与 的等比中项,可知 若 ,由 ,可知 ,由 ,可知 ,则 ,则数列:,是以 为周期的数列,易知前 项和无最大值 若 ,同理可得数列:,则数列 是以 为周期的数列,且 ,所以 的最大值 故选 【答案】【解析】如图,将圆台 补成圆锥 设圆台 的母线长为 ,则 (),等腰梯形 为过两母线的截面 设 ,由 ,则有 ,则 ()()当 时,当 最大时,即截面为轴截面时,面积最大,则 的最大值为()当 时,当 时,截面面积最大,则 的最大值为 ()()()()故选 【高三理科数学参考答案(第 页共 页)】【答案】【解析】,()()(槡)(),则 槡 因为槡 ,所以 ,则有 故选 【答案】(,)(答案不唯一,横、纵坐标互为相反数即可)【解析】由题意可知 (,),设 (,),则 ,取 ,则 ,则与 垂直的非零向量可以为 (,)【答案】【解析】当 时,()当 时,(),根据导数的几何意义结合图象,不妨设 ,因为曲线 ()在点 ,处的两条切线互相垂直,所以 ,整理得 ,所以 【答案】槡【解析】不妨设点 在第二象限,直线 的方程为 ,联立 ,得点 的纵坐标 ;联立 ,得点 的纵坐标 由 为 的三等分点,可知 ,则有 ,整理,得 ,则 (),故 的离心率 槡 【答案】【解析】设 ,(,)在 中,由余弦定理得 槡 ,由正弦定理得 ,则 在 中,槡 ,则 ,在 中,由余弦定理得 槡 ()【高三理科数学参考答案(第 页共 页)】槡 槡 槡 槡()(),当 时,()取最大值 ,则 的最大值为 ,故 的最大值为 【答案】见解析【解析】()设数列 的公差为 ,由 ,得 ,由 ,得 ,故 ,即 (分)递推,得 ,得 ,故 得证(分)()法一:若 为等差数列,设公差为 ,由 可得,又 ,即 ,所以 又 ,的前 项和()法二:由 ,可知 又 ,所以 又 为等差数列,所以 ,即 ()(),解得 ,(分)则有 ,的前 项和 ()()(分)【答案】见解析【解析】(),(分)所以 ,(分)所以 所以所求线性回归方程为 (分)()当 时,(分)当 时,(分)故不能用此回归方程估计该海域其他岛屿的植物种数(分)【答案】见解析【解析】()如图,取 的中点 ,连接 ,因为 ,所以 又因为 ,为公共边,【高三理科数学参考答案(第 页共 页)】所以 ,所以 (分)同理可得 ,所以 因为 ,所以 ,(分)所以 ,又因为 ,所以 平面 又因为 平面 ,所以平面 平面 (分)()过点 作直线 平面 ,以 为坐标原点,的方向分别为 轴,轴,轴的正方向,建立如图所示的空间直角坐标系,设 (),则 槡,(),(,),(,),(槡,),则有 槡,(),槡,(),(槡,)设平面 的一个法向量为 (,),由 ,得槡 ,槡 ,可取 (,)设直线 与平面 所成的角为 ,则 ,槡 槡(分)()()槡,当且仅当 ,即 槡时,等号成立(分)因为 ,所以 槡,此时三棱锥 的体积 槡槡槡,【高三理科数学参考答案(第 页共 页)】故当直线 与平面 所成的角最大时,三棱锥 的体积为槡(分)【答案】见解析【解析】()不妨设点 在 轴的上方,由椭圆的性质可知 因为 是以 为直角顶点的等腰直角三角形,所以,(),代入 ,得 ,整理,得 (分)因为 的面积为 ,所以 ,所以 ,故椭圆 的方程为 (分)()设直线 的斜率为,直线 的斜率为,(,),(,),直线 的方程为 不妨设 ,则 ,联立 ,可得(),则 ,(分)所以 ,即 (),则 ()()()(),(分)所以 ,故 得证(分)【答案】见解析【解析】()设 ()(),()的定义域为(,),()(分)当 时,(),()在区间(,)上单调递增(分)当 时,令 (),得 ,若 ,(),(),()单调递增;若 ,(),(),()单调递减【高三理科数学参考答案(第 页共 页)】综上,当 时,()在(,)上单调递增;当 时,()在区间 ,()上单调递增,在区间,()上单调递减(分)()直线 与曲线 ()有两个交点,即关于 的方程 有两个解,整理方程,得 (分)令 (),其中 ,则 ()令 (),则 ()当 时,(),此时函数 ()单调递增;当 时,(),此时函数 ()单调递减(分)由 (),(),得 时,(),则 ();当 时,()(),则 ();当 时,()(),则 (),所以函数 ()在区间(,)上单调递增,在区间(,)上单调递减,则 ()()(分)当 趋近于时,()趋近于 ,即当 时,();当 趋近于 时,()趋近于故要使直线 与曲线 ()有两个交点,则需 ,即 的取值范围是,()(分)【答案】见解析【解析】()由曲线 的参数方程是 ,得 的直角坐标方程为 (分)由 得 ,又 ,则有 ,故 的直角坐标方程为 (分)()把 ,代入 ,得 ,整理,得 设,所对应的点分别为 ,则 (分)【高三理科数学参考答案(第 页共 页)】把 ,代入 ,得 (),整理,得 ,设,所对应的点分别为 ,则 (分)因为 ,即 与 的中点重合,所以 ,所以 ,且 ,所以 槡,故 槡(分)【答案】见解析【解析】()因为 ,即 ,所以 ()(分)根据基本不等式,得()(),当且仅当 槡时,等号成立,整理,得(),所以 槡(分)()()()(分)由基本不等式和不等式的性质,得槡 ,故 ,当且仅当 槡时,等号成立,所以(分)

    注意事项

    本文(河南省2022-2023学年高三年级TOP二十名校四月冲刺考(一)理科数学含答案.pdf)为本站会员(学****享)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开