二级圆锥-圆柱齿轮减速器设计说明书.doc
若数据和此论文中的不同,我可以帮你们修改的!该论文配有相关图纸!需要者可以加我QQ:844423381XX学院毕业设计说明书课 题: 二级圆锥-圆柱齿轮减速器 子课题: 同课题学生姓名: 专 业 学生姓名 班 级 学 号 指导教师 完成日期 二级圆锥-圆柱齿轮减速器摘要 减速器是各类机械设备中广泛应用的传动装置。减速器设计的优劣直接影响机械设备的传动性能。 减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。选用减速器时应根据工作机的选用条件,技术参数,动力机的性能,经济性等因素,比较不同类型、品种减速器的外廓尺寸,传动效率,承载能力,质量,价格等,选择最适合的减速器。 减速器的类别、品种、型式很多,目前已制定为行(国)标的减速器有40余种。减速器的类别是根据所采用的齿轮齿形、齿廓曲线划分;减速器的品种是根据使用的需要而设计的不同结构的减速器;减速器的型式是在基本结构的基础上根据齿面硬度、传动级数、出轴型式、装配型式、安装型式、联接型式等因素而设计的不同特性的减速器。 齿轮传动是现代机械中应用最广的一种传动形式。它的主要优点是:瞬时传动比恒定,工作平稳,传动准确可靠,可传递空间任意两轴间的运动和动力 适用的功率和速度范围广 传动效率高 工作可靠,使用寿命长外轮廓尺寸小,结构紧凑。 绪论 随着社会的发展和人民生活水平的提高,人们对产品的需求是多样化的,这就决定了未来的生产方式趋向多品种、小批量。在各行各业中十分广泛地使用着齿轮减速器,它是一种不可缺少的机械传动装置. 它是机械设备的重要组成部分和核心部件。目前,国内各类通用减速器的标准系列已达数百个,基本可满足各行业对通用减速器的需求。国内减速器行业重点骨干企业的产品品种、规格及参数覆盖范围近几年都在不断扩展,产品质量已达到国外先进工业国家同类产品水平,承担起为国民经济各行业提供传动装置配套的重任,部分产品还出口至欧美及东南亚地区,推动了中国装配制造业发展。1.1 本设计的目的及意义目的: A 通过设计熟悉机器的具体操作,增强感性认识和社会适应能力,进一步巩固、 深化已学过的理论知识,提高综合运用所学知识发现问题、解决问题的能力。B 学习机械设计的一般方法,掌握通用机械零件、机械传动装置或简单机械的设计原理和过程。C 对所学技能的训练,例如:计算、绘图、查阅设计资料和手册,运用标准和规范等。D 学会利用多种手段(工具)解决问题,如:在本设计中可选择CAD等制图工具。E 了解减速器内部齿轮间的传动关系。意义: 通过设计,培养学生理论联系实际的工作作风,提高分析问题、解决问题的独立工作能力;通过实习,加深学生对专业的理解和认识,为进一步开拓专业知识创造条件,锻炼动手动脑能力,通过实践运用巩固了所学知识,加深了解其基本原理12 减速器的发展状况减速器是用于原动机与工作机之间的独立的传动装置,用来降低转速和增大转矩,以满足工作需要。在现代机械中应用极为广泛,具有品种多、批量小、更新换代快的特点。渐开线二级圆柱齿轮减速器具有体积小、重量轻、承载能力大、传动平稳、效率高、所配电机范围广等特点,可广泛应用于各行业需要减速的设备上。二级圆柱齿轮减速器的计算机辅助设计及制造(CAD/CAM)技术是当今设计以及制造领域广泛采用的先进技术。通过本课题的研究,将进一步对这一技术进行深入地了解和学习。13 减速器的发展趋势当今的减速器正向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。我国减速器及齿轮技术发展总趋势是向六高、二低、二化方面发展。六高即高承载能力、高齿面硬度、高精度、高速度、高可靠性和高传动效率;二低即低噪声、低成本;二化即标准化、多样化,在现代机械中应用极为广泛。 减速器行业涉及的产品类别包括了各类齿轮减速器、行星齿轮减速器及蜗杆减速器,也包括了各种专用传动装置,如增速装置、条素装置、以及包括柔性传动装置在内的各类复合传动装置等,产品服务领域涉及冶金、有色、煤炭、建材、船舶、水利、电力、工程机械及石化等行业。其作为传动机械行业里的一个重要的分支,在机械制造领域中扮演着越来越重要的角色。近几年,随着中国产业经济的迅猛发展,减速器行业在国内也取得了日新月异的进步。 由于编者水平有限,设计中有错误与不当之处在所难免,希望老师批评指正。关键字:减速器、齿轮、轴承、联接目 录摘要························································································2绪论························································································4一、设计任务书······································································8 一、设计题目········································································8 二、原始数据········································································8 三、设计内容和要求······························································8二、传动方案的拟定·····························································9三、电动机的选择··································································9 1.选择电动机的类型·······························································9 2.选择电动机功率···································································9 3.确定电动机转速···································································10四、传动比的计算 1. 总传动比·········································································10 2. 分配传动比······································································10五、传动装置运动、动力参数的计算1.各轴的转速············································································102.各轴功率计············································································103.各轴转矩················································································11六、 传动件的设计计算一、高速级锥齿轮传动的设计计算················································111.选择材料、热处理方式和公差等级·············································112.初步计算传动的主要尺寸··························································113.确定传动尺寸·········································································124.校核齿根弯曲疲劳强度·····························································135.计算锥齿轮传动其他几何尺寸····················································14二、低速级斜齿圆柱齿轮的设计计算1.选择材料、热处理方式和公差等级··············································142.初步计算传动的主要尺寸···························································153.确定传动尺寸···········································································164.校核齿根弯曲疲劳强度······························································175.计算锥齿轮传动其他几何尺寸·····················································18七、齿轮上作用力的计算·························································191.高速级齿轮传动的作用力····························································192.低速级齿轮传动的作用力····························································19八、减速器装配草图的设计······················································19九、轴的设计计算···································································20 一、高速轴的设计与计算····························································20 1.已知条件············································································21 2.选择轴的材料······································································21 3.初算轴径············································································22 4.结构设计············································································22 5.键连接················································································23 6.轴的受力分析·······································································23 7.校核轴的强度·······································································24 8.校核键连接的强度·································································24二、中间轴的设计与计算································································25 1.已知条件···············································································25 2.选择轴的材料········································································25 3.初算轴径···············································································26 4.结构设计···············································································26 5.键连接··················································································28 6.轴的受力分析·········································································28 7.校核轴的强度·········································································29 8.校核键连接的强度···································································30三、低速轴的设计与计算·································································30 1.已知条件·················································································30 2.选择轴的材料···········································································30 3.初算轴径·················································································30 4.结构设计·················································································31 5.键连接····················································································32 6.轴的受力分析···········································································32 7.校核轴的强度···········································································33 8.校核键连接的强度·····································································34十、减速器箱体的结构尺寸··························································35十一、润滑油的选择与计算························································36十二、装配图和零件图································································37致谢·······························································································38参考文献························································································39一、设计任务书一、设计题目:设计圆锥圆柱齿轮减速器设计卷扬机传动装置中的两级圆锥-圆柱齿轮减速器。该传送设备的传动系统由电动机减速器运输带组成。轻微震动,单向运转,在室内常温下长期连续工作。 (图1)1电动机;2联轴器;3减速器;4卷筒;5传送带二、原始数据:运输带拉力F(KN)运输带速度V(m/s)卷筒径D(mm)使用年限(年)100000.350010三、设计内容和要求:1. 编写设计计算说明书一份,其内容通常包括下列几个方面:(1)传动系统方案的分析和拟定以及减速器类型的选择;(2)电动机的选择与传动装置运动和动力参数的计算;(3)传动零件的设计计算(如除了传动,蜗杆传动,带传动等);(4)轴的设计计算;(5)轴承及其组合部件设计;(6)键联接和联轴器的选择及校核;(7)减速器箱体,润滑及附件的设计;(8)装配图和零件图的设计;(9)校核;(10)轴承寿命校核;(11)设计小结;(12)参考文献;(13)致谢。2. 要求每个学生完成以下工作:(1)减速器装配图一张(0号或一号图纸)(2)零件工作图二张(输出轴及该轴上的大齿轮),图号自定,比例11。(3)设计计算说明书一份。二、传动方案的拟定运动简图如下:(图2)由图可知,该设备原动机为电动机,传动装置为减速器,工作机为型砂运输设备。减速器为两级展开式圆锥圆柱齿轮的二级传动,轴承初步选用深沟球轴承。联轴器2选用凸缘联轴器,8选用齿形联轴器。三、电动机的选择电动机的选择见表1计算项目计算及说明计算结果1.选择电动机的类型根据用途选用Y系列三相异步电动机 2.选择电动机功率 运输带功率为 Pw=Fv/1000=10000*0.3/1000 Kw=3Kw 查表2-1,取一对轴承效率轴承=0.99,锥齿轮传动效率锥齿轮=0.96,斜齿圆柱齿轮传动效率齿轮=0.97,联轴器效率联=0.99,得电动机到工作机间的总效率为总=4轴承锥齿轮齿轮2联=0.994*0.96*0.97*0.992=0.88 电动机所需工作效率为 P0= Pw/总=3/0.88 Kw=3.41Kw 根据表8-2选取电动机的额定工作功率为Ped=4KwPw=3Kw总=0.88 P0=3.41KwPed=4Kw 3.确定电动机转速输送带带轮的工作转速为 nw=(1000*60V)/d=1000*60*0.3/*500r/min=11.46r/min由表2-2可知锥齿轮传动传动比i锥=23,圆柱齿轮传动传动比i齿=36,则总传动比范围为 i总=i锥i齿=23*(36)=618电动机的转速范围为n0=nwi总11.46*(618)r/min=68.76206.28r/min 由表8-2知,考虑到此转速很小,最接近的同步转速为750r/min,所以本例选用750r/min的电动机,其满载转速为720r/min,其型号为Y160M1-8nw=11.46r/minnm=720r/min四、传动比的计算及分配传动比的计算及分配见表2计算项目计算及说明计算结果1.总传动比i=nm/nw=720/11.46=62.83i=62.832.分配传动比高速级传动比为 i1=0.25i=0.25*62.83=15.71为使大锥齿轮不致过大,锥齿轮传动比尽量小于3,取i1=3低速级传动比为 i2=i/i1=62.83/3=20.94此值过大,取i2=4i1=3i2=4五、传动装置运动、动力参数的计算传动装置运动、动力参数的计算见表3计算项目计算及说明计算结果1.各轴转速n0=720r/minn1=n0=720r/minn2=n1/i1=720/3r/min=240r/minn3=n2/i2=240/4r/min=60r/minnw=n3=60r/minn1=n0=720r/minn2=240r/minnw=n3=60r/min2.各轴功率p1=p0联=3.41*0.99kw=3.38kwP2=p11-2=p1轴承锥齿=3.38*0.99*0.96kw=3.21kwP3=p22-3=p2轴承直齿=3.21*0.99*0.97kw=3.08kwPw=p33-w=p3轴承联=3.08*0.99*0.99kw=3.02kwp1=3.38kwP2=3.21kwP3=3.08kwPw=3.02kw3.各轴转矩T0=9550p0/n0=9550*3.41/720N·mm=45.23N·mT1=9550p1/n1=9550*3.38/720N·mm=44.83N·mT2=9550p2/n2=9550*3.21/240N·mm=127.73N·mT3=9550p3/n3=9550*3.08/60N·mm=490.23N·mTw=9550pw/nw=9550*3/60N·mm=477.5N·mT0=45.23N·mT1=44.83N·mT2=127.73N·mT3=490.23N·mTw=477.5N·m六、 传动件的设计计算 一、高速级锥齿轮传动的设计计算锥齿轮传动的设计计算见表4 计算项目计算及说明计算结果1.选择材料、热处理方式和公差等级 考虑到带式运输机为一般机械,大、小锥齿轮均选用45钢,小齿轮调质处理,大齿轮正火处理,由表8-17得齿面硬度HBW1=217255,HBW2=162217.平均硬度HBW1=236,HBW2=190.HBW1-HBW2=46.在3050HBW之间。选用8级精度。45钢小齿轮调质处理大齿轮正火处理8级精度2.初步计算传动的主要尺寸因为是软齿面闭式传动,故按齿面接触疲劳强度进行设计。其设计公式为d11) 小齿轮传递转矩为T1=44830·2) 因v值未知,Kv值不能确定,可初步选载荷系数Kt=1.33) 由表8-19,查得弹性系数ZE=189.84) 直齿轮,由图9-2查得节点区域系数ZH=2.55) 齿数比=i=36) 取齿宽系数=0.37) 许用接触应力可用下式公式 由图8-4e、a查得接触疲劳极限应力为 小齿轮与大齿轮的应力循环次数分别为N1=60n1aLh=60*720*1*2*8*250*10=1.728*109N2=N1/i1=1.728*109/3=5.76*108由图8-5查得寿命系数ZN1=1,ZN2=1.05;由表8-20取安全系数SH=1,则有取 初算小齿轮的分度圆直径d1t,有 d1t82.90mm3.确定传动尺寸(1)计算载荷系数 由表8-1查得使用系数KA=1.0,齿宽中点分度圆直径为 dm1t=d1t(1-0.5)=82.90*(1-0.5*0.3)mm=70.47mm故vm1=dm1tn1/60*100=*70.47*720/60*1000m/s=2.66m/s由图8-6降低1级精度,按9级精度查得动载荷系Kv=1.23,由图8-7查得齿向载荷分配系数Kß=1.13,则载荷系数K=KAKvKß=1.0*1.23*1.13=1.4(2) 对d1t进行修正 因K与Kt有较大的差异,故需对Kt计算出的d1t进行修正 ,即 d1=82.90=84.97mm(3) 确定齿数 选齿数Z1=20,Z2=uZ1=3*20=60,(4) 大端模数m ,查表8-23,取标准模数m=5mm(5) 大端分度圆直径为 d1=mZ1=5*20mm=100mm>84.97 d2=mZ2=5*60mm=300mm(6) 锥齿距为 R=(7) 齿宽为 b=0.3*158.11mm=47.43mm 取b=50mm d1=84.97mm Z1=23 Z2=60m=5mmd1=100mmd2=300mmR=158.11mmb=50mm4.校核齿根弯曲疲劳强度 齿根弯曲疲劳强度条件为 (1) K、b、m和同前(2) 圆周力为 Ft=(3) 齿形系数YF和应力修正系数YS 即当量齿数为 由图8-8查得YF1=2.65,YF2=2.13,由图8-9查得YS1=1.58,YS2=1.88(4) 许用弯曲应力 由图8-4查得弯曲疲劳极限应力为 由图8-11查得寿命系数YN1=YN2=1,由表8-20查得安全系数SF=1.25,故 满足齿根弯曲强度5.计算锥齿轮传动其他几何尺寸ha=m=5mmhf=1.2m=1.2*5mm=6mmC=0.2m=0.2*5mm=1mda1=d1+2mcos=100+2*5*0.949mm=109.49mmda2=d2+2mcos=300+2*5*0.316mm=303.16mmdf1=d1-2.4mcos=100-2.4*5*0.949mm=88.61mmdf2=d2-2.4mcos=300-2.4*5*0.316mm=296.21mmha=5mmhf=6mmC=1mda1=109.49mmda2=303.16mmdf1=88.61mmdf2=296.21mm 二、低速级斜齿圆柱齿轮的设计计算 斜齿圆柱齿轮的设计计算见表5计算项目计算及说明计算结果1.选择材料、热处理方式和公差等 大、小锥齿轮均选用45钢,小齿轮调质处理,大齿轮正火处理,由表8-17得齿面硬度HBW1=217255,HBW2=162217.平均硬度HBW1=236,HBW2=190.HBW1-HBW2=46.在3050HBW之间。选用8级精度。45钢小齿轮调质处理大齿轮正火处理8级精度2.初步计算传动的主要尺寸因为是软齿面闭式传动,故按齿面接触疲劳强度进行设计。其设计公式为1) 小齿轮传递转矩为T2=127730·2) 因v值未知,Kv值不能确定,可初步选载荷系数Kt=1.43) 由表8-19,查得弹性系数ZE=189.84) 初选螺旋角,由图9-2查得节点区域系数ZH=2.465) 齿数比=i=46) 查表8-18,取齿宽系数=1.17) 初选Z3=20,则Z4=uZ3=4*20=80,则端面重合度为 = =1.64轴向重合度为由图8-13查得重合度系数8) 由图11-2查得螺旋角系数Z=0.999) 许用接触应力可用下式计算 由图8-4e、a查得接触疲劳极限应力为 小齿轮与大齿轮的应力循环次数分别为N3=60n2aLh=60*240*1*2*8*250*10=5.76*108N4=N3/i2=5.76*108/4=1.44*108由图8-5查得寿命系数ZN3=1.05,ZN4=1.13;由表8-20取安全系数SH=1.0,则有 取初算小齿轮的分度圆直径d3t,得 =64.36mmZ3=20Z4=80d3t64.36mm3.确定传动尺寸(1)计算载荷系数 由表8-21查得使用系数KA=1.0因=0.81m/s,由图8-6查得动载荷系数Kv=1.1,由图8-7查得齿向载荷分配系数K=1.09,由表8-22查得齿向载荷分配系数K=1.18,则载荷系数为 K=KAKvKK=1.0*1.1*1.09*1.18=1.41(2) 对d3t进行修正 因K与Kt有较大的差异,故需对Kt计算出的d3t进行修正,即 =64.51mm(3) 确定模数mn mn=按表8-23,取mn=4mm(4) 计算传动尺寸 中心距为 =204.5mm取整,螺旋角为 因值与初选值相差较大,故对与有关的参数进行修正 由图9-2查得节点区域系数ZH=2.43,端面重合度为 = =1.60轴向重合度为由图8-3查得重合度系数,由图11-2查得螺旋角系数Z=0.99 =65.89mm因=0.83m/s,由 图8-6查得动载荷系数Kv=1.1,载荷系数K值不变 mn=按表8-23,取mn=4mm,则中心距为 螺旋角为修正完毕,故 b4=95mm b3=100mm K=1.41d3t65.89mmmn=4mma=210mmd3=84.03mmd4=336.13mmb4=95mmb3=100mm4.校核齿根弯曲疲劳强度 齿根弯曲疲劳强度条件为 1) K、T3、mn和d3同前2) 齿宽b=b3=100mm3) 齿形系数YF和应力修正系数YS。当量齿数为 由图8-8查得YF3=2.55,YF4=2.18;由图8-9查得YS3=1.55,YS4=1.764) 由图8-1查得重合度系数5) 由图11-23查得螺旋角系数6) 许用弯曲应力为 由图8-4f、b查得弯曲疲劳极限应力由图8-11查得寿命系数YN3=YN4=1,由表8-20查得安全系数SF=1.25,故=26.54Mpa<满足齿根弯曲疲劳强度