人教A版新课标高中数学必修3教案.pdf
新课标高中数学必修3教案目 录第一章算法初步.11.1.1算法的概念.31.1.2程序框图(第二、三课时).91.2 输入、输出语句和赋值语句(第一课时).15122-1.2.3条件语句和循环语句(第二、三课时).211.3 算法案例 第1、2课时辗转相除法与更相减损术.27第3、4课时秦九韶算法与排序.31第5课时进位制.35算法初步复习课.39第二章统计初步.452.1.1 简单随机抽样.452.1.2 系统抽样.492.1.3 分层抽样.532.2.1用样本的频率分布估计总体分布(2课时).572.2.2用样本的数字特征估计总体的数字特征(2课时).61第三章概率.653.1 随机事件的概率3.1.13.1.2随机事件的概率及概率的意义(第一、二课时).653.1.3概率的基本性质(第三课时).693.2 古典概型(第四、五课时)3 2 1 3.2.2古典概型及随机数的产生.733.3 几何概型3.3.13.3.2几何概型及均匀随机数的产生.79 第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。理解并掌握几种基本的算法语句输入语句、输出语句、赋值语句、条件语句、循环语句。进一步体会算法的基本思想。4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。1、结合熟悉的算法,把握算法的基本思想,学会用自然语言来描述算法。2、通过模仿、操作和探索,经历设计程序流程图表达解决问题的过程。在具体问题的解决过程中理解程序流程图的三种基本逻辑结构:顺序结构、条件结构、循环结构。3、通过实际问题的学习,了解构造算法的基本程序。4、经历将具体问题的程序流程图转化为程序语句的过程,理解几种基本算法语句输入语句、输出语句、赋值语句、条件语句、循环语句,体会算法的基本思想。5、需要注意的问题1)从熟知的问题出发,体会算法的程序化思想,而不是简单呈现一些算法。2)变量和赋值是算法学习的重点之一,因为设置恰当的变量,学习给变量赋值,是构造算法的关键,应作为学习的重点。3)不必刻意追求最优的算法,把握算法的基本结构和程序化思想才是我们的重点。4)本章所指的算法基本上是能在计算机上实现的算法。三、教学内容及课时安排:1.1 算法与程序框图(约 2 课时)1.2 基本算法语句(约 3 课时)1.3 算法案例(约 5 课时)复习与小结(约 2 课时)四、评价建议1.重视对学生数学学习过程的评价关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。2.正确评价学生的数学基础知识和基本技能关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法1.1.1算法的概念一、教学目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。(4)会写出解线性方程(组)的算法。(5)会写出一个求有限整数序列中的最大值的算法。(6)会应用S c i l a b 求解方程组。2、过程与方法:通过求解二元次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。难点:把自然语言转化为算法语言。三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n l)是否为质数;求任意一个方程的近似解;),并且能够重复使用。2、要使算法尽量简单、步骤尽量少。3、要保证算法正确,且计算机能够执行,如:让计算机计算1X2X3X4X5是可以做到的,但让计算机去执行“倒-杯水”“替我理发”等则是做不到的。教学用具:电脑,计算器,图形计算器四、教学设想:(1)创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。(2)探索研究算法(a l g o r i t h m)词源于算术(a l g o r i s m),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。(3)例题分析:例 1 任意给定一个大于1 的整数n,试设计一个程序或步骤对n是否为质数 做出判定。算法分析:根据质数的定义,很容易设计出下面的步骤:第一步:判断n是否等于2,若 n=2,则 n是质数;若 n 2,则执行第二步。第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则 n不是质数;若没有这样的数,则 n是质数。这是判断一个大于1 的整数n是否为质数的最基本算法。例 2 用二分法设计一个求议程x2-2=0 的近似根的算法。算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.0 0 5,则不难设计出以下步骤:第一步:令 f(x)=x?-2。因为 f (0,f(2)0,所以设 x i=l,x z=2。第二步:令 m=(X i+x 2)/2,判断f(m)是否为0,若则,则1n 为所长;若否,则继续判断f (x j f (m)大于 0还是小于0 o第三步:若 f(X|)f (m)0,则令X i=m;否则,令 X 2=m。第四步:判 断 x x j =殳!二 44;第三步:将 y =_ 从您7M),得 x =8G。此时我们得到了二元-次为麓组的求解公式,利用在公前才得到倒2的另一个算法:第一步:取 A i=l,B i=-2,C=l,A2=2,B2=l,C2=-l;络一小、_;笛 -B,C+第一步:计算x=-A.B-,A-,B.第三步:输出运算结奥:2GA18,A251与y=可见利用上述算法,更加有利于上机执行与操作。基础知识应用题例 4写出一个求有限整数列中的最大值的算法。解:算法如下。S1 先假定序列中的第一个整数为“最大值”。S2将序列中的下一个整数值与“最大值”比较,如果它大于此“最大值”,这时你就假定“最大值”是这个整数。S3如果序列中还有其他整数,重复S 2。S4在序列中一直到没有可比的数为止,这时假定的“最大值”就是这个序列中的最大值。学生做一做 写出对任意3个整数a,b,c 求出最大值的算法。老师评一评 在例2中我们是用自然语言来描述算法的,下面我们用数学语言来描述本题的算法。S I m a x=aS 2 如果 b m a x,则 m a x=b.S 3 如果 O m a x,则 m a x=c.S 4 m a x 就是a,b,c中的最大值。综合应用题例 5写出求1+2+3+4+5+6 的一个算法。分析:可以按逐一相加的程序进行,也可以利用公式1+2+炉 迎 土 进行,也可以根据加法运算2律简化运算过程。解:算 法 1:S 1:计 算 1+2 得到3;S 2:将第一步中的运算结果3 与 3相加得到6;S 3:将第二步中的运算结果6与 4相加得到10;S 4:将第三步中的运算结果10与 5 相加得到15;S 5:将第四步中的运算结果15 与 6 相加得到2 1。算法2:S 1:取 n=6;c o 、4 号+1)S 2:计算-;2S 3:输出运算结果。算法3:S 1:将原式变形为(1+6)+(2+5)+(3+4)=3 X 7;S 2:计算 3 X 7;S 3:输出运算结果。小结:算 法 1 是最原始的方法,最为繁琐,步骤较多,当加数较大时,比如1+2+3+10000,再用这种方法是行不通的;算法2与算法3都是比较简单的算法,但比较而言,算法2 最为简单,且易于在计算机上执行操作。学生做一做 求 1 X 3 X 5 X 7 X 9 X 1 1 的值,写出其算法。老师评一评 算 法 1;第一步,先 求 1 X 3,得到结果3;第二步,将第一步所得结果3再乘以5,得到结果15;第三步,再 将 15 乘以7,得到结果105:第四步,再 将 105 乘以9,得到9 4 5;第五步,再将9 4 5 乘 以 11,得 到 103 9 5,即是最后结果。算法2:用 P表示被乘数,i 表示乘数。S 1 使 P=l。S 2 使 i=3S 3 使 P=P X iS 4 使 i=i+2S5若 i l l,则返回到S 3 继续执行;否则算法结束。小结 由于计算机动是高速计算的自动机器,实现循环的语句。因此,上述算法2不仅是正确的,而且是在计算机上能够实现的较好的算法。在上面的算法中,S 3,S 4,S 5 构成一个完整的循环,这里需要说明的是,每经过一次循环之后,变量P、i 的值都发生了变化,并且生循环一次之后都要在步骤S 5 对 i 的值进行检验,一旦发现i的值大于1 1 时,立即停止循环,同时输出最后一个P的值,对于循环结构的详细情况,我们将在以后的学习中介绍。4、课堂小结本节课主要讲了算法的概念,算法就是解决问题的步骤,平时列论我们做什么事都离不开算法,算法的描述可以用自然语言,也可以用数学语言。例如,某同学要在下午到体育馆参加比赛,比赛下午2 时开始,请写出该同学从家里发到比赛地的算法。若用自然语言来描述可写为(1)1:0 0 从家出发到公共汽车站(2)1:1 0 上公共汽车(3)1:4 0 到达体育馆(4)1:4 5 做准备活动。(5)2:0 0 比赛开始。若用数学语言来描述可写为:S 1 1:0 0 从家出发到公共汽车站S 2 1:1 0 上公共汽车S 3 1:4 0 到达体育馆S 4 1:4 5 做准备活动S 5 2:0 0 比赛开始大家从中要以看出,实际上两种写法无本质区别,但我们在书写时应尽量用教学语言来描述,它的优越性在以后的学习中我们会体会到。5、自我评价1、写出解一元二次方程a x2+b x+c=0 (a W O)的一个算法。2、写出求1 至 1 0 0 0 的正数中的3 倍数的一个算法(打印结果)6、评价标准1、解:算法如下S 1 计算=b?-4 a cS 2 如果 0,则方程无解;否则x l=S 3 输出计算结果x l,x 2或无解信息。2、解:算法如下:S 1 使 i=lS 2 i 被 3除,得余数rS 3 如果r=0,则打印i,否则不打印S 4 使 i=i+lS 5 若 i W l O O O,则返回到S 2继续执行,否则算法结束。7、作业:1、写出解不等式f-23 0 的一个算法。解:第一步:f-23=0 的两根是加=3,及=T。第二步:由夕-23 0可知不等式的解集为%|-l 0 的不等式的解的步骤(为方便,我们设a 0)如下:第一步:计算=b2-4ac;.第二步:若(),示出方程两根 2 =(设汨)生),则不等式解集为 x 或内及;2a I)第三步:若=0,则不等式解集为 x I x e R 且 X。);2a第四步:若 _=忙工;第三步:在 第 与,窠中为 质 得 到 y的值m,得直线与y 轴交点(0,m):第四步:在第二步结果中令尸0 得到x的值n,得直线与x 轴交点(n,0);第五步:计算S=L机2第六步:输出运算结果1.1.2程序框图(第二、三课时)一、教学目标:1、知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。2、过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。3、情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。二、重点与难点:重点是程序框图的基本概念、基本图形符号和3 种基本逻辑结构,难点是能综合运用这些知识正确地画出程序框图。三、学法与教学用具:1、通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题就得十分清晰和具体。有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端。2、我们在学习这部分内容时,首先要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。例 如“起止框”只能出现在整个流程图的首尾,它表示程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在学习这部分知识时必须要注意的一个方面。另外,在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。3、教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。基本概念:(1)起止框图:I-1起止框是任何流程图都不可缺少的,它表明程序的开始和结束,所以一个完整的流程图的首末两器苏或是起止框。(2)输入、输出框:/二表示数据的输入或结果的输出,它可用在算法中的任何需要输入、输出的位置。图 1-1 中有三个输入、输出框。第一个出现在开始后的第一步,它的作用是输入未知数的系数a l l,a l 2,a 2 1,a 2 2 和常数项b l,b 2,通过这一步,就可以把给定的数值写在输入框内,它实际上是把未知数的系数和常数项的值通知给了计算机,另外两个是输出框,它们分别位于由判断分的两个分支中,它们表示最后给出的运算结果,左边分支中的输出分框负责输出Dr0时未知数x l,x 2 的值,右边分支中的输出框负责输出D=0 周的结果,即输出无法求解信息。(3)处理框:|它是采用来赋值、执行计算语句、传送运算结果的图形符号。图 1T中出现了两 个 处 理 框。第 上 不 亦 理 框 的 作 用 是 计 算 D=a l l a 2 2-a 2 1 a l 2 的 值,第二个处理框的作用是计算x l=(b l a 2 2-b 2 a l 2)/D,x 2=(b 2 a l l-b l a 2 1)/D 的值。(4)判断框 判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否”(也可用“Y”与“N”)两个分支,在 图 1-1 中,通过判断框对I)的值进行判断,若判断框中的式子是D=0,则说明1)=0 时由标有“是”的分支处理数据;若 D A 0,则由标有“否”的分支处理数据。例如,我们要打印x的绝对值,可以设计如下框图。从图中可以看到由判断框分出两个分支,构成一个选择性结构,其中选择的标准是“x 2 0”,若符合这个条件,则按照“是”分支继续往下执行;若不符合这个条件,则按照“否”分支继续往下执行,这样的话,打印出的结果总是x的绝对值。在学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:(1)使用标准的图形符号。(2)框图一般按从上到下、从左到右的方向画。(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的惟一符号。(4)判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。(5)在图形符号内描述的语言要非常简练清楚。2、典例剖析:例 1:已知x=4,y=2,画出计算w=3 x+4 y的值的程序框图。解:程序框如下图所示:.4和 2 分别是x 和 y 的值小结:此图的输入框旁边加了一个注释框 它的作用是对框中的数据或内容进行说明,它可以出现在任何位置。基础知识应用题1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。例2:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。算法分析:这是一个简单的问题,只需先算出p的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。程序框图:2)条件结构:一些简单的算法可以用顺序结构来表示,但是这种结构无法对描述对象进行逻辑判断,并根据判断结果进行不同的处理。因此,需要有另一种逻辑结构来处理这类问题,这种结构叫做条件结构。它是根据指定打件选择执行不同指令的控制结构。例3:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在,画出这个算法的程序框图。算法分析:判断分别以这3个数为三边边长的三角形是否存在,只需要验收这3个数当中任意两个数的和是否大于第3个数,这就需要用到条件结构。程序框图:存在这样的三角形不存在这样的三角形结束3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:(1)一类是当型循环结构,如 图1-5(1)所示,它的功能是当给定的条件P1成立时,执行A框,A框执行完毕后,再判断条件R是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件R不成立为止,此时不再执行A框,从b离开循环结构。(2)另一类是直到型循环结构,如下图所示,它的功能是先执行,然后判断给定的条件巳是否成立,如果R仍然不成立,则继续执行A框,直到某一次给定的条件P2成立为止,此时不再执行A框,从b点离当型循环结构(1)直到型循环结构(2)例4:设计一个计算1+2+100的值的算法,并画出程序框图。算法分析:只需要一个累加变量和一个计数变量,将累加变量的初始值为0,计数变量的值可以从1到 100,程序框图:3、课堂小结:本节课主要讲述了程序框图的基本知识,包括常用的图形符号、算法的基本逻辑结构,算法的基本逻辑结构有三种,即顺序结构、条件结构和循环结构。其中顺序结构是最简单的结构,也是最基本的结构,循环结构必然包含条件结构,所以这三种基本逻辑结构是相互支撑的,它们共同构成了算法的基本结构,无论怎样复杂的逻辑结构,都可以通过这三种结构来表达4、自我评价:1)设x为为一个正整数,规定如下运算:若x为奇数,则求3 x+2;若x为偶数,则为5 x,写出算法,并画出程序框图。2)画出求四泊为2 m的值的程序框图。5、评价标准:1.解:算法如下。S1输入xS2若x为奇数,则输出A=3 x+2;否则输出A=5 xS3算法结束。程序框图如卜图:2、解:序框图如下图:6、作业:课本P11习题1.1 A组 2、31.2.1输入、输出语句和赋值语句(第一课时)教学目标:知识与技能(1)正确理解输入语句、输出语句、赋值语句的结构。(2)会写一些简单的程序。(3)掌握赋值语句中的“=”的作用。过程与方法(1)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。(2)通过对现实生活情境的探究,尝试设计出解决问题的程序,理解逻辑推理的数学方法。情感态度与价值观通过本节内容的学习,使我们认识到计算机与人们生活密切相关,增强计算机应用意识,提高学生学习新知识的兴趣。重点与难点、重点靠确理解输入语句、输出语句、赋值语句的作用。难点:准确写出输入语句、输出语句、赋值语句。学法与教学用具计算机、图形计算器教学设想【创设情境】在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,如:听 M P 3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,那么,计算机是怎样工作的呢?计算机完成任何一项任务都需要算法,但是,我们用自然语言或程序框图描述的算法,计算机是无 法“看得懂,听得见”的。因此还需要将算法用计算机能够理解的程序设计语言(p r o g r a m m i n gl a n g u a g e)翻译成计算机程序。程序设计语言有很多种。如 B A S IC,F o x b a s e,C语言,C+,J+,VB等。为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:输入语句 输出语句 赋值语句 条件语句 循环语句这就是这一节所要研究的主要内容基本算法语句。和赋值语句。(板出课题)【探究新知】我 们 知 道,顺 序 结 构 是 任 何 一 个 算 法 都 离 不 开输 入、输 出 语 句 和 赋 值 语 句 基 本 上 对 应 于 算 法 中 的(如 右 图)计 算 机 从 上 而 下 按 照 语 句 排 列 的 顺 序 执输入语句和输出语句分别用来实现算法的输入信息,能。如下面的例子:用描点法作函数丁 =/+3-24+3 0 的图象时,需今天,我们先一起来学习输入、输出语句的 基 本 结 构。顺 序 结 构。行 这 些 语 句。输出结果的功要求出自变量与函数的组对应值。编写程序,分别计算当x =-5,4,3,-2,-1,0,1,2,3,4,5 时的函数值。程序:(教师可在课前准备好该程序,教学中直接调用运行)INPUT“x=;xy=x A 3+3*x A 2-24*x+30PRINT xPRINT y(学生先不必深究该程序如何得来,只要求懂得上机操作,模仿编写程序,通过运行自己编写的程序发现问题所在,进一步提高学生的模仿能力。)K提问 在这个程序中,你们觉得哪些是输入语句、输出语句和赋值语句呢?(同学们互相交流、议论、猜想、概括出结论。提示:“in p u t”和“p r in t”的中文意思等)()输入语句在该程序中的第1行中的I N P U T语句就是输入语句。这个语句的一般格式是:I NPUT“提示内容”;变量其中,“提示内容”一般是提示用户输入什么样的信息。如每次运行上述程序时,依次输入-5,-4,-3,-2,-1,0,1,2,3,4,5,计算机每次都把新输入的值赋给变量“X”,并 按“x”新获得的值执行下面的语句。I N P U T语句不但可以给单个变量赋值,还可以给多个变量赋值,其格式为:I NPUT”提示内容1,提示内容2,提示内容3,”;变 量1,变量2,变量3,例如,输入一个学生数学,语文,英语三门课的成绩,可以写成:I N P U T “数学,语文,英语”;a,b,c注:“提示内容”与 变 量 之 间 必 须 用 分 号 隔 开。各“提示内容”之 间 以 及 各 变 量 之 间 必 须 用 逗 号 隔 开。但最后的变量的后面不需要。(-)输出语句在该程序中,第3行和第4行中的P R I N T语句是输出语句。它的一般格式是:PRI NT 提示内容”;表达式同输入语句样,表达式前也可以有“提示内容”。例如下面的语句可以输出斐波那契数列:/PRI NT The Fibonacci Progression is:w;1 1 2 3 5 8 1 3 2 1 3 4 5 5 “”此时屏幕上显示:T he F ib o n a c c i P r o gr e s s io n is:1 1 2 3 5 8 1 3 2 1 3 4 55输出语句的用途:(1)输出常量,变量的值和系统信息。(2)输出数值计算的结果。K思 考 儿 在LL2中程序框图中的输入框,输出框的内容怎样用输入语句、输出语句来表达?(学生讨论、交流想法,然后清学生作答)参考答案:输入框:I N P U T ”请输入需判断的整数n=;n输出框:P R I N T n;“是质数。”P R I N T n;”不是质数。”(三)赋值语句用来表明赋给某一个变量一个具体的确定值的语句。除了输入语句,在该程号中第2行的赋值语句也?以给变量提供初值。它的一般格式是:变量=表达式赋值语句中的“二”叫做赋值号。赋值语句的作用:先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变量,使该变量的值等于表达式的值。注:赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)赋值号与数学中的等号意义不同。K思考 在 1.1.2 中程序框图中的输入框,哪些语句可以用赋值语句表达?并写出相应的赋值语句。(学生思考讨论、交流想法。)【例题精析】K例 1以编写程序,计算一个学生数学、语文、英语三门课的平均成绩。分析:先写出算法,画出程序框图,再进行编程。变式引申:在此程序的基础上,设计一个程序,要求最后A的输出值是30。(该变式的设计意图是学生加深对重复赋值的理解)再将X的值赋予B,从而达到交换 A,B的值。(比如交换装满水的两个水桶里的水需要再找一个空桶)程序:INPUT AINPUT BPRINT A,BX=AA=BB=XPRINT A,BENDK补例比编写一个程序,要求输入个圆的半径,便能输出该圆的周长和面积。(7 1取 3.14)分析:设圆的半径为R,则圆的周长为C=2 R,面积为5=万/?2,可以利用顺序结构中的INPUT语句,PRINT语句和赋值语句设计程序。程序:【课堂精练】p1 5练习参考答案:I.程序:INPUT“半径为 R=;RC=2*3.14*RS=3.14*RA2PRINT“该圆的周长为:“;CPRINT“该圆的面积为:”;SENDR提问以1.2.3INPUT 请输入华氏温度:”:xy=(x-32)*5/9PRINT“华氏温度:”;xPRINT“摄氏温度:;yEND如果要求输入一个摄氏温度,输出其相应的华氏温度,又该如何设计程序?(学生课后思考,讨论完成)2.程序:INPUT 请输入 a(aHO)=:aINPUT“请输入 b(bHO)=;bX=a+bY=a-bZ=a*bQ=a/bPRINT a,bPRINT X,Y,Z,QEND3.程序:p=(2+3+4)/2t=p*(p-2)*(p-3)*(p-4)s=SQR(t)PRINT“该三角形的面积为:”;sEND注:SQR()是函数名,用来求某个数的平方根。【课堂小结】本节课介绍了输入语句、输出语句和赋值语句的结构特点及联系。掌握并应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题,特别是掌握赋值语句中“=”的作用及应用。编程一般的步骤:先写出算法,再进行编程。我们要养成良好的习惯,也有助于数学逻辑思维的形成。【评价设计】1.P23 习题 L 2 A 组 1 (2)、22.试对生活中某个简单问题或是常见数学问题,利用所学基本算法语句等知识来解决自己所提出的问题。要求写出算法,画程序框图,并写出程序设计二1.2.2/.2.3条件语句和循环语句(第2、3课时)教学目标:知识与技能(1)正确理解条件语句和循环语句的概念,并掌握其结构的区别与联系。(2)会应用条件语句和循环语句编写程序。过程与方法经历对现实生活情境的探究,认识到应用计算机解决数学问题方便简捷,促进发展学生逻辑思维能力情感态度与价值观了解条件语句在程序中起判断转折作用,在解决实际问题中起决定作用。深刻体会到循环语句在解决大量重复问题中起重要作用。减少大量繁琐的计算。通过本小节内容的学习,有益于我们养成严谨的数学思维以及正确处理问题的能力。重点与难点 重点:1:件语句和循环语句的步骤、结构及功能。难点:会编写程序中的条件语句和循环语句。学法与教学用具计算机、图形计算器教学设想【创设情境】试求自然数1+2+3+99+100的和。显然大家都能准确地口算出它的答案:5050。而能不能将这项计算工作交给计算机来完成呢?而要编程,以我们前面所学的输入、输出语句和赋值语句还不能满足“我们II益增长的物质需要”,因此,还需要进一步学习基本算法语句中的另外两种:条件语句和循环语句(板出课题)【探究新知】(-)条件语句算法中的条件结构是由条件语句来表达的,是处理条件分支逻辑结构的算法语句。它的一般格式是:(I F-THEN-EL SE 格式)首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句1,否则执行ELSE后的语句2。其对应的程序框图为:(如上右图)在某些情况下,也可以只使用IF-THEN语句:(即 IF-THEN格式)T H E N后的语句,如果条件不符合,则直接结束该条侏语句,转而执行其他语句。其对应的程序框图为:(如上右图)条件语句的作用:在程序执行过程中,根据判断是否满足约定的条件而决定是否需要转换到何处去。需要计算机按条件进行分析、比较、判断,并按判断后的不同情况进行不同的处理。【例题精析】K例1儿编写程序,输入一元二次方程依2+以+,=0的系数,输出它的实数根。分析:先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。算法分析:我们知道,若判别式八=廿-4 a c 0,原 方 程 有 两 个 不 相 等 的 实 数 根 再=土 亚、2a b J Kb=;若 =(),原方程有两个相等的实数根%=%=-2;若AvO,原方程没有实2a 2a数根。也就是说,在求解方程之前,需要首先判断判别式的符号。因此,这个过程可以用算法中的条件结构来实现。又因为方程的两个根有相同的部分,为了避免重复计算,可以在计算不和 之 前,先 计 算=一2,2a4 =业。程序框图:(参照课本 7)2a程序:(如右图所示)注:S Q R ()和A B S ()是两个函数,分别用来求某个数的平方根和绝对值。即 S Q R(x)=yx,A B S(x)=pK例2:编写程序,使得任意输入的3个整数按从大到小的顺序输出。INPUT wPlease input a,b,c=d=b*b-4*a*cp=-b/(2*a)q=SQR(ABS(d)/(2*a)IF d=0 THENxl=p+qx2=p-qIF xl=x2 THENPRINT:则a,b,c=;aIF ba THENEfeSEa=bb=tPRINT“Tw(r满 献 心 I f l j a n d x2”IF ca THEN-t=a-算法分析:用a,b,c表示输入的3个整数;为了节约变量,把它们重新排列后,仍 用a,b,c表示,并使aN b c.具体操作步骤如下。第一步:输入3个整数a,b,c.第二步:将a与b比较,并把小者赋给b,大者赋给a.第三步:将a与c比较.并把小者赋给c,大者赋给a,此时a已是三者中最大的。第四步:将b与c比较,并把小者赋给c,大者赋给b,此时a,b,c已按从大到小的顺序排列好。a=cc=tEND IFIF cb THENt=bb=cc=tEND IFPRINT a,b,cEND第五步:按 顺 序 输 出a,b,c.程 序 框 图:(参 照 课 本 外,)程 序:(如右框图所示)(补 例 铁路 部 门 托 运 行 李 的 收 费 方 法 如 下:y是 收 费 额(单 位:元),x是 行 李 重 量(单位:kg),当0 x 20kg时,20kg的 部 分 按0.35元/k g,超 出20kg的部分,则 按0.65元/k g收 费,请根据上述 收费方法编写程序。_ f 0.35x,0 x20,该函数是个分段函数。需要对行程序:李重量作出判断,因此,这个过程可以用算法中的条件结构来实现。INPUT 请 输 入 旅 客 行 李 的 重 量(kg)x=;xIF x0 AND xv=20 THENy=0.35*xELSEy=0.35*20+0.65*(x-20)END IFPRINT”该旅客行李托运费为:”;yEND【课堂精练】1.P2Q分析:2,20练 习2.(题 略)如果有两个或是两个以上的并列条件时.,用“AND”把它们连接起来。练习参考答案:1.(题 略)INPUT 请 输 入 三 个 正 数a,b,c=;IF a+bc AND a+cb AND b+caPRINT”以下列三个数:;a,b,ELSEPRINT“以下列三个数:;a,b,END IFENDa,b,cTHENc,“可以构成三角形c,“不可以构成三角形!”(二)循环语句算法中的循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语 言 中 也 有 当 型(WHILE型)和 直 到 型(UNTIL型)两种语句结构。即WHILE语 句 和UNTIL语句。之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某 诙 条 件不符合为止。这 时,计算机将不执行循环体,直 接 跳 到WEND语句后,接 着 执 行WEND之后的语句。因此,当 型 循 环 有 时 也 称 为“前 测 试 型”循 环。其对应的程序结构框图为:(如上右图)(2)UNTIL语句的一般格式是:DO循环体LOOPU N T IL条件其对应的程序结构框图为:(如上右图)K思考2:直到型循环又称为“后测试型”循环,参照其直到型循环结构对应的程序框图,说说计算机是按怎样的顺序执行UNTIL语句的?(让学生模仿执行WHILE语句的表述)从 UNTIL型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳 到 LOOP UNTIL语句后执行其他语句,是先