第三章催化剂的表征ppt课件.ppt
病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程第三章 催化剂表征对于催化剂的化学组成,常用湿法化学分析,即先用适当的方法将催化剂固体溶解,再进行定性和定量测定,常用火焰光度法、原子吸收光谱、诱导耦合等离子体等分析法。对于催化剂的表面的表征技术有多种,XRD、XPS等。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程第一节 催化剂织构的表征织构:在许多催化剂中,特别是那些表面积主要包含在孔结构中的氧化物催化剂,那些孔结构常常在一个反应中具有速控步的作用,和这样孔性催化剂相联系的性质,或者由载体材料孔本质所影响的性质,可以广泛地称为催化剂的织构。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3.1.1 固体催化剂的形态孔、孔分布、表面积和密度固体催化剂在形态上有意义的特征包括表面积、孔体积、孔大小的分布和密度。绝大多数固体催化剂上孔性固体,根据大小,孔可以分为多种:a 微孔(孔径2nm);超微孔(孔径0.7nm)b 介孔(2nm孔径50nm)c 粗孔(孔径=2),ql为吸附质的液化热。令 则令 则病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程令 则假设催化剂总面积为S,则令吸附气体的总体积为V,则其中,V0为单位表面积催化剂吸附单层分子气体的体积。其中,Vm=V0S,为催化剂表面吸附一单层分子所需的气体体积。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程x=1时,V=。当吸附质压力为饱和蒸气压时,即P=P0,将发生凝聚,V=。因此,x=1与P=P0相对应,故x=P/P0,一般形式的BET等温方程病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程BET方法测比表面:从吸附等温线中读取对应的P和V,计算出P/V(P0-P)和P/P0,以P/V(P0-P)对P/P0作图,所得直线的斜率为I=(c-1)/cVm,截距为L=1/cVm,则每克催化剂具有的表面积称为比表面积,其中,为吸附质的摩尔体积,NA为Avogadro常数,Sm为一个吸附质分子的截面积,W为催化剂质量。常用吸附质为惰性气体,最常用是N2,其Sm=16.2 2,吸附温度在其液化点77.2 K附近以避免化学吸附,对多数体系,相对压力在0.05 0.35间的数据与BET方程有较好的吻合。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程B点法测定II型吸附等温线比表面积:病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程1.2 活性表面积的测定活性表面积的测定BET方法测定的是催化剂的总表面积。通常只有一部分才有活性,这部分叫活性表面活性表面。活性表面的面积可以用“选择化学滴选择化学滴定定”来测定,因为化学吸附具有选择性。如:对于负载型金属催化剂,氢和CO的化学吸附可以测定活性金属表面积;利用碱性气体(NH3)的化学吸附可以测定催化剂酸性中心所具有的表面积;表面氢氧滴定:从气体吸附量计算活性表面积,首先要确定选择化学吸附的计量关系,即吸附计量系数吸附计量系数-每个吸附分子能够覆盖几个活性中心。氢的吸附(一般为解离吸附)计量系数为2;CO在线式吸附下计量系数为1,桥式吸附为2。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程例子:合成氨用铁催化剂总表面积和活性表面积的测定:总表面积:N2等温吸附线 K2O所占表面积:CO2等温吸附线 Fe所占表面积:N2解离化学吸附 Al2O3所占表面积:total-K2O-Fe病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程二、孔结构参量和孔的简化模型二、孔结构参量和孔的简化模型二、孔结构参量和孔的简化模型二、孔结构参量和孔的简化模型孔结构的类型对催化剂的活性、选择性、强度等有很大影响。2.1 催化剂的密度催化剂的密度催化剂的密度是单位体积内含有的催化剂质量,以=m/V表示。孔性催化剂的表观体积VB=颗粒之间的空隙Vi+颗粒内部的孔体积Vk+催化剂骨架实体积Vf。1、堆密度或表观密度:VB通常是将催化剂颗粒放入量筒中拍打至体积不变测量的值。2、颗粒密度:颗粒体积Vp=Vk+Vf=VB Vi。常压下利用汞填充法求出Vi,再求出Vp,因此颗粒密度也称为汞置换密度。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3、真密度:通常,将装填满催化剂颗粒的容器(体积为VB)抽空,然后引入氦,冲入的氦气量代表了Vi+Vk,由此计算出 Vf。因此真密度也称为氦置换密度。4、视密度:当用某种溶剂去填充催化剂骨架之外的各种空间,然后计算出Vf,这样得到的密度称为视密度,或称溶剂置换密度。视密度是真密度的近似。2.2 催化剂的孔容催化剂的孔容孔容或孔体积,是催化剂内所有细孔体积的加和,常用比孔容来表示。比孔容Vg为1g催化剂颗粒内部所具有的孔体积。从1g催化剂的颗粒体积扣除骨架体积,即为比孔容病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程孔容的简易测定方法:四氯化碳法测定孔容。在一定的四氯化碳蒸汽压力下,四氯化碳蒸汽只在催化剂的细孔内凝聚并充满。若测得这部分四氯化碳量,即可算出孔的体积:其中,W1和W2分别代表催化剂孔中在凝聚四氯化碳前后的质量,d为四氯化碳的相对密度。实验时在四氯化碳中加入正十六烷,以调整四氯化碳的相对压力为0.95,在此情况下,四氯化碳蒸汽仅凝聚在孔内而不在孔外。2.3 催化剂的孔隙率催化剂的孔隙率孔隙率,是催化剂的孔体积与整个颗粒体积的比。对于一个体积为1cm3的颗粒来说,其中所含孔的体积数值,就是孔隙率。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程2.4 孔的简化模型与结构参数孔的简化模型与结构参数孔的简化模型:假设一个颗粒有n个均匀的圆柱形孔,平均孔长度为 ,平均孔半径为 ,孔内壁光滑,伸入颗粒中心。1、平均孔半径若一个催化剂颗粒的外表面为sx,单位外表面内的孔口数目为np,颗粒内表面的理论值颗粒的表面积主要由内表面贡献,其实验值为所以 =每个颗粒所含孔体积的理论值为每个颗粒的孔体积的实验值为所以 =可以得到平均孔半径与孔容成正比,与比表面成反比平均孔半径与孔容成正比,与比表面成反比。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程2、平均孔长度一个孔隙率为的催化剂颗粒,由于其孔的分布均匀,所以在颗粒的单位外表面上,孔口占的面积数值为。一个孔口的面积为 ,所以单位外表面的孔口数为考虑孔以各种角度与外表面相交,取平均值45,则代入 ,并以 代入,则对于球体,Vp/sx=dp/6,dp为球的直径,所以病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程2.5 毛细管凝聚与孔径分布毛细管凝聚与孔径分布IUPAC的分类:催化剂的细孔可以分为三类:微孔(micropore):孔半径小于2nm。如活性炭、沸石分子筛等;中孔(mesopore):孔半径为2 50nm。多数催化剂;大孔(macropore):半径大于50nm的孔,如Fe2O3,硅藻土等。1、毛细管凝聚与Kelvin方程毛细管凝聚模型:由于一些催化剂含有许多细孔,所以吸附过程中常常有毛细管凝聚现象发生。毛细管凝聚模型的原理-Kelvin方程:在毛细管内液体弯月面凹面上方的平衡蒸气压力P小于同温度下的饱和蒸气压P0,即在固体孔内低于饱和蒸气压力的蒸气可以凝聚为液体。这一原理的数学表达式为Kelvin方程。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程Kelvin方程:其中为液体表面张力系数,液体摩尔体积,rK为孔半径,为接触角。Kelvin方程描述了凝聚时,气体的相对压力和孔径的关系,是吸附法测孔径分布的理论基础。2、吸附的滞后现象:吸附等温线上吸附线和脱附线的不重合。(ABC):细孔壁上单层吸附;(CDE):吸附支;(EFC):脱附支;(CDEF):滞后环。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程在IV型吸附等温线上,在一定相对压力下,脱附支上的吸附量总是大于对应吸附支上的吸附量。滞后现象的出现与催化剂中细孔内凝聚有关。模型一-McBain墨水瓶模型:假设细孔形状如右图,瓶口处半径rn,瓶体处半径rb。根据Kelvin方程,瓶口和瓶体处发生凝聚的蒸气压分别为因为rb rn,故Pb Pn。墨水瓶模型的毛细管凝聚病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程模型二-Cohan两端开口的圆柱形模型:在孔内,气-液间不是形成弯月面,不能直接用Kelvin方程,而是形成圆筒形液膜,随压力增加,液膜逐渐增厚。Cohan给出凝聚所需的压力为其中rK=2r。脱附时,从充满凝聚液的空的蒸发是从孔两端的弯月面开始,这时的弯月面为半球形,因而按照Kelvin方程,凝聚液蒸发所需的压力为对同一个孔,凝聚与蒸发发生在不同的相对压力下,这就是出现滞后的原因。圆柱孔模型的毛细管凝聚病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3、滞后环的类型:主要与吸附剂的孔结构和孔的网络性质有关。多孔玻璃等物质具有的孔径很小,孔径分布又十分集中,在P/P0小于1很多时,等温线就进入一个平台,这时所有的孔都被凝聚液充满;再增加P/P0,外表面引起的吸附量并不明显增加。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程4、孔径分布:一般表示为孔体积对孔半径的平均变化率与孔半径的关系,也可表示成孔分布函数与孔半径的关系。通常采用气体吸附法测定中等孔范围的孔分布,汞孔度计法测定通常采用气体吸附法测定中等孔范围的孔分布,汞孔度计法测定大孔范围的孔分布大孔范围的孔分布。(1)气体吸附法:根据毛细管凝聚原理,从等温吸附实验得到的吸附体积和相对压力数据,原则上,可以应用Kelvin方程求得与相对压力相应的孔径,进而求出孔径分布。实际凝聚过程:(1)吸附时,细孔内壁上先形成吸附膜,此膜厚度随相对压力增加变化,仅当吸附质压力增加到一定值时,才在由吸附膜围成的空腔内发生凝聚。即吸附质压力值与发生凝聚的空吸附质压力值与发生凝聚的空腔的大小一一对应腔的大小一一对应。(2)脱附时,降低压力,大孔内的凝聚液首先蒸发,在孔壁上留有吸附膜;再降低压力,次大孔内的凝聚液蒸发,孔壁上留有吸附膜,但同时大孔孔壁上的吸附膜变薄。所以压力降低造成的脱附量由两部分组成:与压力改变相应的空腔内凝聚液的蒸发和孔壁吸附膜的厚度减小。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程BJH方法校正孔体积和膜厚度以及计算孔分布采用开口圆柱孔模型,并认为在脱附过程中,气相和吸附相之间的平衡由孔壁上的物理吸附和孔内毛细管凝聚两个过程决定。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程P1/P0趋于1时,吸附剂所有孔都被凝聚液充满。特定平衡条件下,孔体积VP1与毛细管凝聚体(芯子)体积VK1的关系为:当相对压力由P1/P0降至P2/P0,导致最大孔凝聚液芯的空出和降低了物理吸附层厚度t1,可测得脱附体积V1,则有当相对压力由P2/P0降至P3/P0,这时脱附体积V2不仅来自于第二个孔凝聚液芯的空出和该孔物理吸附层厚度变薄,还来自于第一个孔的第二次变薄空出的体积Vt2,则有其中病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程为实际能够计算孔壁变薄减少的体积,Vt2 可以表示为:其中Ac1为脱附掉物理吸附气体处的平均面积。对脱附的任一阶段,有一般的表达式该式不包括第n次脱出凝聚液芯的孔。所以可以得到式中Acj不是一个常数,随P/P0下降变化。但一个孔的面积是一个常数,。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程假设相对压力降低时,在相对于P/P0高和低变化间所有空出凝聚液芯子有平均孔半径rP。左图表示出在脱附的第n步,先前空出的孔半径为rP,孔壁物理吸附层厚度变化为tn,脱附前后毛细管半径分别为rn和rn-1,其平均半径为rc。在产生tn变化的脱附中,毛细管平均面积为上述公式为计算孔体积和孔径分布关系提供了一个使用基础。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程两个关系式:(1)P/P0 rK的关系式,可以用Kelvin方程式解决,再利用rP=rK+t,可以求得rP;(2)(P/P0)t的关系式,即相对压力与吸附层厚度的关系,吸附层厚度可以从实验测得的数据获得。有(P/P0)膜厚度t的数据表,以及经验公式:病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(2)汞孔度计法/压汞法:由于表面张力原因,汞对固体物质一般不浸润,不能进入催化剂的细孔。汞只有在受压时才能进入细孔。圆柱形孔的表面张力作用在孔口周围,其值为强制汞进入细孔的外加压力其值为平衡时,以上两力相等,得到在压力P下汞可进入的孔的半径取汞的表面张力=0.48 N/m,接触角取140,压力单位取kg/cm2,r以nm为单位,则压汞法常以孔分布函数与孔半径的关系表示孔分布。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程孔分布函数V(r)的导出:当孔半径从r变到r+dr,孔体积变化dV,微分 ,所以实验时,将待测样品置于样品管底部,其上放入汞,然后对汞加压,得到汞压入曲线,从而求出dV/dP,最后计算出孔分布函数V(r),以V(r)对r作图即得到孔分布图。一般外加压力到7000 kPa,可测得最小孔半径在10nm左右。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程实线:气体吸附法实线:气体吸附法圆圈:压汞法圆圈:压汞法许多催化剂和载体具有双峰形孔分布:大孔:在制备中形成,存在于颗粒间,孔径102103纳米;小孔:在焙烧和还原条件下形成,存在于颗粒内部,孔径110纳米,是催化剂表面积的主要提供者;如用于烃类水汽转化的Fe2O3-Cr2O3催化剂。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程Pore size distribution of CeO2-TiO2 mixed oxidesJun Fang,Weixin Huang*et al.J.Phys.Chem.C accepted病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程三、颗粒大小及其分布三、颗粒大小及其分布三、颗粒大小及其分布三、颗粒大小及其分布催化剂颗粒的大小一般指其成型后的外型尺寸,涉及的范围是10-9 10-5 m,包括:分子筛、碳粒、Raney镍金属这些较大(10-6m)的颗粒(grains);金属团聚体(aggregate)或金属、氧化物簇(cluster)这些较小(2nm)的颗粒;单晶晶粒及由一个或多个晶粒构成的颗粒。催化剂的颗粒度一般用平均粒径和颗粒度分布来表示。金属晶粒在载体上的分布及大小,强烈影响金属组分的催化性质。如Pt/C催化剂催化2,3-二甲基丁烷的脱氢。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程平均粒径1)长度-数平均直径2)体积-面积平均直径 对于球形颗粒晶粒大小分布的直方图:数分布和面积分布。面积分布对于粒径组合对总表面积和催化性质的主要贡献作出更好的说明。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程金属的分散度D:表面上金属原子数目与总的金属原子数目之比。化学吸附能够给出其中表面原子数的直接测量。对于球形颗粒:VM是体相中每个金属原子的体积;AM是表面上一个金属原子所占的平均面积。假定各低指数晶面暴露比例相等。Ir:fcc,a=3.839;ns:单位表面平均原子数。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程,可以计算相关数值。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程随颗粒大小的增加,分散度D减小。比表面与颗粒度之间的关系因为Ai=di2,Vi=di3/6,则当颗粒很小时(1.2 nm),已不能按球形考虑颗粒几何构型。测定颗粒大小方法:TEM,XRD,SA-XRD,XANES,磁方法等。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程四、催化剂机械强度四、催化剂机械强度四、催化剂机械强度四、催化剂机械强度工业催化剂除活性、选择性和稳定性合格外,还要有足够的机械强度。影响催化剂机械强度因素主要有催化剂的化学、物理性能,催化剂制备方法、制备工艺流程与制备条件。固定床反应器使用的催化剂,床层下部要承受上部的重力及输送反应物料的压力;流化床反应器使用的催化剂主要考虑其抗磨强度。催化剂颗粒大小的分布对流化床的流化特性影响很大,因此需要经常监测这种分布。用筛分方法可以获得颗粒大小的分布。