欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教版六年级下册数学总复习教案设计.docx

    • 资源ID:9025921       资源大小:424.07KB        全文页数:120页
    • 资源格式: DOCX        下载积分:40金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要40金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版六年级下册数学总复习教案设计.docx

    总复习1数与代数(1)数的认识第 1 课时整数的认识教具准备PPT 课件学前准备复习整数知识重点复习整数数位顺序表教学过程谈 话 揭 题 1复习回顾。小学阶段的数学我们已经学完了,到目前为止,我们都学过哪些数?(整数、小数、分数、百分数、正数、负数) 2揭示课题。这节课,我们就一起来复习整数的相关知识。(板书课题:整数的认识)回顾与整理 1整数的意义。(1)什么是整数?根据整数的意义,整数可以分成哪几类? 预设生 1:像3,2,1,0,1,2,3,这样的数统称为整数。生 2:根据整数的意义,整数可以分为“正整数、0、负整数”三类,或者说整数可以分为“自然数和负整数”两类。(2)什么是自然数?什么是负数?预设生 1:用来表示物体个数的 1,2,3,4,叫做自然数,0 也是自然数,它表示一个物体也没有。1生 2:像3, ,0.5,这样的数叫负数,0 既不是正数也2不是负数。(3)说一说整数的特点。预设生 1:整数的个数是无限的,没有最大的整数,也没有最小的整数。生 2:正数大于 0,负数小于 0。2多位数的读法和写法。(1) 提问:怎样读多位数?明确读法。从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的 0 都不读出来,其他数位连续有几个 0 都只读一个零。举例说明。(2) 提问:怎样写多位数?明确写法。从高位到低位,一级一级地写,哪一个数位上一个计数单位也没有,就在那个数位上写 0 占位。举例说明。例如:五亿九千零二十万零五3整数的大小比较。(1) 如何比较两个多位数的大小,谁能举例说说? 预设生 1:如果位数不同,位数多的数大。例如:10003098320生 2:如果位数相同,左起第一位上的数大的那个数就大。例如: 469008369999生 3:左起第一位上的数相同,就比较左起第二位上的数,左起第二位上的数相同,就比较左起第三位上的数,以此类推,直到比较出大小为止。例如:379088379069(2) 如何比较负数与负数或正数与负数的大小? 预设生 1:借助数轴比较。在数轴上,右边的数比左边的数大。例如: 53,31生 2:两个负数相比,负号后面的数大的数反而小。例如:53生 3:正数大于负数。4改写和省略尾数。过渡:根据需要,有时需要将一个较大的数改写成用“万”或“亿”作单位的数。师:谁能举例说说如何将一个较大的数改写成用“万”或“亿” 作单位的数?预设生 1:如果是整万或整亿的数,改写时只要在原数末尾划掉4 个0 或 8 个 0,同时加上“万”或“亿”字。例如:1080000108 万,2000000002 亿生 2:如果改写的数不是整万或整亿的数,就在万位或亿位的右下方点上小数点,去掉小数末尾的0,再在小数后面写上“万”或“亿”字。例如:45489745.4897 万,1500487091.50048709 亿过渡:有时根据实际需要,要把一个数某一位后面的尾数省略, 求它的近似数。师:谁能举例说一说,如何把一个数某一位后面的尾数省略,求它的近似数? 预设生 1:如果是省略万位后面的尾数,就要看千位上的数字,如果千位上是 1,2,3,4,可直接舍去;如果千位上是 5 或者是大于 5 的数字,就要向万位进一。例如:849738 万生 2:如果是省略亿位后面的尾数,就要看千万位上的数字,如果千万位上是 1,2,3,4,可直接舍去;如果千万位上是 5 或者是大于 5 的数字,就要向亿位进一。例如:1603870062 亿(强调:在小学阶段,通常用“四舍五入”法求一个数的近似数, 一般根据要求,把小数保留到哪一位,就把这一位后面的尾数按照 “四舍五入”法省略,中间用“”连接。引导学生注意改写后的单位)典型例题解析1课件出示例 1。(1)270462×()7×()4×()6×()(2)88008 中的三个“8”分别在什么数位上?各表示什么?这个数中的两个“0”各起到什么作用?分析 本题中的两道题考查的都是有关数位的知识。数位指一个数中每个数字所占的位置,同一个数字由于所占的位置不同,所表示的数值也不同。(1) 2 在万位,表示 2 个万;7 在千位,表示 7 个千;0 在百位起占位作用;4 在十位,表示 4 个十;6 在个位,表示 6 个一。(2) 88008 中的“8”从左往右,依次在万位,表示8 个万;在千位,表示 8 个千;在个位,表示 8 个一。两个 0 都起到占位作用。解答(1)100001000101(2)从左往右,数字“8”依次是在万位,表示 8 个万;在千位, 表示 8 个千;在个位,表示 8 个一。这个数中的两个 0 都起到占位作用。2. 课件出示例 2。地球距离太阳一亿四千九百六十万千米,横线上的数写作() ; “ 四舍五入” 到“ 亿” 位约是()。分析本题考查的是多位数的写法、改写及省略。写数时首先要给数分级,然后从高位到低位,一级一级地写,哪一位上是几就写几, 哪一位上一个计数单位也没有就写“0”占位;写省略数时,因为亿位后面的尾数最高位比 5 小,所以先把亿位后面的尾数省略,再添上“亿”字,即 1 亿。解答1496000001 亿合作探究 1明确活动要求。小组合作:用 4 个 7 和 3 个 0 按下列要求组成七位数。(1)只读一个“零”。(2)一个“零”也不读出来。2讨论写数方法。4 个 7 和 3 个 0 组成的七位数包括个级和万级,根据 0 在多位数中的读写原则:(1) 如果想要只读出一个“零”,读出的 0 就要写在万级或个级的中间。(2) 如果要一个“零”也不读出来,那么就应该把 0 放在万级或个级的末尾。3. 汇报写数结果。(课件展示)(1)(答案不唯一)707770077707007700770(2)700777077077007777000课堂总结通过本节课的学习,你有哪些收获?布置作业1. 教材 73 页“做一做”。2. 教材 74 页 1 题。ïì正整数(大于0)ü板书设计整数的认识ì意义í零ýí读、写方法îï整数þ自然数î大小比较负整数(小于0)数的改写教学反思:第 2 课时小数的认识课前准备教具准备PPT 课件教学过程谈话揭题上节课,我们从意义、读法、写法、大小比较、改写与省略尾数等几个方面复习了整数的相关知识,这节课我们按类似的思路来复习小数的相关知识。(板书课题:小数的认识)回顾与整理 1小数的意义。过渡:你是不是遇到过这种情况,在分东西时常常得不到整数。例如:把一个苹果平均分给 2 个人,每个人只能得到半个苹果。提问:半个怎样表示呢?谁来说说小数的意义? 预设生 1:半个可以用 0.5 表示。生 2:把整数“1”平均分成10 份、100 份、1000 份这样的一份或几份是十分之几、百分之几、千分之几可以用小数来表示。2. 小数的数位顺序表。小数的数位顺序表是怎样的?谁能把整数、小数的数位顺序表补充完整?(课件出示数位顺序表,小数部分留白。指名回答,师填充)整数部分点数位千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位十分位百分位千分位万分位计个·十百千万数单千亿百亿十亿亿千万百万十万万千百十(一分之分之分之分之位)一一一一亿级万级个级小数小数部分3. 小数的读法和写法。(1)怎样读小数?怎样写小数呢? 预设生 1:读小数的时候,整数部分按照整数的读法读,小数点读作 “点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。生 2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。(2)写小数时需要注意什么?(空位用“0”补足) 4小数的分类。(1) 谁知道根据小数部分的位数是否有限,小数可以分成哪几类?预设生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。(2) 谁能举例说明什么是有限小数?什么是无限小数? 预设生 1:小数部分的位数是有限的小数,叫做有限小数。例如:21.7, 35.3,0.13 都是有限小数。生 2:小数部分的位数是无限的小数,叫做无限小数。例如: 8.33,3.1415926都是无限小数。(3) 无限小数还可以再细分吗?如果细分可以分成哪几类? 预设生:无限小数可以分为无限不循环小数和循环小数。(4) 关于无限不循环小数和循环小数,你都了解哪些知识? 预设生 1:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:生 2:一个数的小数部分,有一个数字或者连续几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:2.555,0.0333, 17.109109。生 3:一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99的循环节是“9”,0.5454的循环节是“54”。5小数的性质。(1)谁能说说小数有怎样的性质? 预设生:在小数的末尾添上 0 或者去掉 0,小数的大小不变。(2)理解小数的性质时,应该注意什么?(提示:要注意的是“小数的末尾”,而不是“小数点的后面”) 6小数点位置的变化。提问:小数点位置移动引起小数大小变化的规律是什么?移动小数点时需要注意什么?明确:(1) 小数点向右移动一位,该数就扩大到原来的 10 倍;小数点向右移动两位,该数就扩大到原来的 100 倍;小数点向右移动三位,该数就扩大到原来的 1000 倍例如:将 0.07 的小数点向右移动一位、两位、三位,会分别得到 0.7,7,70,它们分别将0.07 扩大到原来的 10 倍、100 倍、1000 倍。(2) 小数点向左移动一位,该数就缩小到原来的1;小数点向左10移动两位,该数就缩小到原来的1;小数点向左移动三位,该数就1001缩小到原来的1000例如:把 3.25 缩小到原来的111,只需把 3.25 的小101001000数点向左移动一位、两位、三位就得到 0.325,0.0325,0.00325。(强调:小数点向左移或者向右移位数不够时,要用“0”补足)典型例题解析1课件出示例 1。一个四位数,给它加上小数点后比原数小 2003.4,这个四位数是多少?分析此题考查的是学生对小数点位置的移动引起小数大小变化问题的掌握情况。因为一个整数减去一个小数后,差的小数部分只有一位,从而推测出减数的小数部分也只有一位,即整数的小数点向左移动了一位,119整数缩小到原来的,它们的差是原数的 1。所以,原数为 1010102003.4÷92226。10æ1 1 öø解答2003.4÷çè10÷22262课件出示例 2。将 3.14,3.142,3.1415 按从大到小的顺序排列。分析本题考查的是小数的大小比较。此题中 的值应写出小数点后第五位上的数字才能比较,排列如下: 3143.140003.14159 3143.1414131423.14200314153.14150探究活动 1课件出示探究题目。3把 化成小数。7(1)求出小数点后第 2012 位上的数字是几? (2)小数点后前 2012 位上的数字和是多少? 2引导探究。(1)小组合作,思考、交流:本题考查的是什么知识?3如何把 化成小数?7怎样解决问题? (2)分组汇报。预设组 1:本题考查的是分数化成小数的方法、循环小数的特点以及周期规律等知识的综合运用情况。3组 2:3÷7组 3:小数点后每六位“428571”为一个循环节, 7可以把这六个数字看成一组来考虑。组 4:2012÷63352,所以小数点后第2012 位上的数字是“428571”中的第 2 个数字 2。组 5:小数点后前2012 位上的数字和是 (428571)×335(42)27×33569051。(3)小结。解答此类题,要先把分数化成小数,然后根据循环节进行分析。通常把一个循环节看作一组(一个周期),然后参照周期规律问题解答。课堂总结这节课你学到了什么?布置作业教材 75 页 7 题。ìï小数的意义ï小数的数位顺序表í小数的性质板书设计小数的认识小数ïì有限小数î小数的分类íì循环小数ïî教学反思:无限小数íî不循环小数小数点位置移动引起小数大小变化的规律第 3 课时分数(百分数)的认识课前准备教具准备PPT 课件教学过程谈话揭题上节课我们复习了小数。那么,小数与分数之间、分数与百分数之间又有怎样的区别和联系呢?希望通过本节课对分数、百分数相关知识的复习,你能找到正确的答案。板书课题:分数(百分数)的认识回顾与整理1分数的意义、单位及分数与除法的关系。(1)什么是分数?什么是分数单位?明确:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,其中的一份叫做分数单位。(2)分数与除法有着怎样的关系? 预设生 1:除法中的被除数相当于分数中的分子,除数相当于分母, 除号相当于分数线。生 2:因为 0 不能作除数,所以,所有分数的分母都不能为 0。2真分数、假分数的特点。(1) 真分数的分子比分母小,真分数的分数值小于 1。(2) 假分数的分子大于或等于分母,假分数的分数值大于或等于1。3分数的基本性质、约分和通分。(1)什么是分数的基本性质?分数的分子和分母同时乘或除以相同的数(0 除外),分数的大小不变。这叫做分数的基本性质。(2)什么是约分和通分? 预设生 1:把一个分数化成同它相等,但是分子、分母都比较小的分数,叫做约分。生 2:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(3) 什么是最简分数?分子和分母是互质的分数,叫做最简分数。4小数、分数、百分数的互化。(1) 小数、分数、百分数的互化。小数化成分数。原来有几位小数,就在 1 的后面写几个 0 作分母,把原来的小数去掉小数点作分子,能约分的要约分。例如:0.771255,1.25 。101004分数化成小数。用分子除以分母,能除尽的就化成有限小数;有的不能除尽,不能化成有限小数的,一般保留三位小数。33例如: 3÷40.75,3÷250.12, 425343÷70.429, 4÷90.444。79小数化成百分数。只要把小数点向右移动两位,同时在后面添上百分号即可。例如:0.2323%,1.7170%。百分数化成小数。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位即可。例如:120%1.2,85%0.85。分数化成百分数。通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。1例如: 0.14314.3% 7百分数化成分数。先把百分数改写成分数,能约分的要约成最简分数。例如:85%8517。10020(2) 举例说一说什么样的分数能化成有限小数。预设生 1:一个最简分数,如果分母中除了 2 或 5(2 和 5)以外,不含有其他的质因数,这个分数就能化成有限小数。13例如:0.65,分母中只含有质因数 2 和 5。20130.8125,分母中只含有质因数 2。16生 2:如果一个最简分数的分母中含有除 2 和 5 以外的质因数, 这个分数就不能化成有限小数。1例如:0.056。18分母中除质因数 2 外,还有质因数 3。(强调:如果不是最简分数,要把分数先化成最简分数后再判断。例如:因为把33分母中含有除 2 和 5 以外的质因数,但它能化成有限小数, 7533化成最简分数后,它的分母中只含有质因数 5)75典型例题解析1课件出示例 1。一堆沙子重 3 吨,把它平均分成 5 份,每份是()吨,每份占这堆沙子的()。分析本题考查的是除法和分数在意义上的区别。第一个空填的是具体的数量,可以根据除法的意义,用“总数量÷份数每份的数3量”,即 3÷5 (吨);第二个空填的是分率,可以根据分数的意义, 51把这堆沙子看作单位“1”,平均分成 5 份,每份就是这堆沙子的 。531解答552课件出示例 2。35比较 与 的大小。79解答方法一通分。327535273535, ,因为,所以 763963636379分析本题考查的是学生对分数大小比较方法的掌握情况。本题的解法不唯一,无论选择哪种,合理即可。方法二化成同分子分数。315515151535, ,因为,所以 735927352779。1方法三与 比较。2315135 , ,所以 。729279方法四根据与 1 的差比较。345444351 ,1 ,因为 ,所以 。77999779方法五根据倒数比较。31544135的倒数是 2 , 的倒数是 1 ,因为 1 2 ,所以 。73955379课堂总结通过本节课的学习,掌握了分数的相关知识及与百分数、小数的关系,我们要能应用这些知识解决实际问题,做到学以致用。布置作业教材 75 页 4、8 题。板书设计分数(百分数)的认识ïì分数的意义、单位及与除法的关系。íì真分数分数的分类í分数(百分数)ïî假分数带分数îì约分最简分数分数的基本性质íî通分分数、小数和百分数的互化及大小比较。教学反思:第 4 课时因数、倍数、质数、合数课前准备教具准备PPT 课件教学过程谈话揭题关于因数、倍数、质数、合数,我们学过了哪些概念?这些概念之间又有怎样的联系?(板书课题:因数、倍数、质数、合数)回顾与整理复习、理解相关概念。(1)因数和倍数。什么是倍数?什么是因数?因数与倍数的关系是怎样的?(小组讨论后教师明确概念)例如:4×520,20 是 5 和 4 的倍数,4 和 5 都是 20 的因数。因数和倍数的关系是互相依存的。(强调:在研究因数和倍数时,所研究的数指的都是非 0 自然数)举例说明因数和倍数有什么特征。预设生 1:一个数的因数的个数是有限的,其中最小的是 1,最大的是它本身。例如:20 的因数有 1,20,2,10,4,5,一共有 6 个。生 2:一个数的倍数的个数是无限的,其中最小的是它本身,没有最大的倍数。例如:4 的倍数有 4,8,12,(2)质数与合数。过渡:根据一个数所含因数的个数的不同,还可以得到质数与合数的概念。课件出示如下问题:什么是质数?最小的质数是什么?什么是合数?最小的合数是什么?如何判断一个数是质数还是合数?1 是什么数?什么叫分解质因数?(学生讨论后自主解答) (3)公因数与最大公因数,公倍数与最小公倍数。什么叫公因数?什么叫最大公因数?公因数与互质数的概念有什么联系?互质数与质数有什么区别?公因数:几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数。互质数:公因数只有 1 的两个数叫做互质数。互质数与质数的区别:互质数是指两个数的关系,这两个数的公因数只有 1;质数是对一个自然数而言的,质数只有1 和它本身两个因数。什么叫公倍数?什么叫最小公倍数?请举例说明。公倍数:几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个,叫做这几个数的最小公倍数。例如:2 的倍数有 2,4,6,8,10,12,14,16,18,3 的倍数有 3,6,9,12,15,18,其中 6,12,18,是 2、3 的公倍数,6 是它们的最小公倍数。(4)2、3、5 的倍数的特征。提问:2、3、5 的倍数的特征是什么?什么是偶数?什么是奇数? (学生自主讨论后指名回答)典型例题解析1课件出示例 1。下面的数哪些有因数 3?哪些有因数 5?哪些既有因数 3 又有因数 5?哪些有因数 2、3、5?21301502754206360分析本题考查的是对 2、3、5 的倍数的特征的掌握情况。3 的倍数的特征是各个数位上的数字和是 3 的倍数。5 的倍数的特征是个位上是 0 或 5。3 和 5 的倍数的特征是个位上是 0 或 5,且各个数位上的数字和是 3 的倍数。2、3、5 的倍数的特征是个位上是 0,且各个数位上的数字之和是 3 的倍数。解答有因数 3 的数:21,30,150,420,6360。有因数 5 的数:30,150,275,420,6360。有因数 3 和 5 的数:30,150,420,6360。有因数 2、3、5 的数:30,150,420,6360。2课件出示例 2。(1) 两个质数的和是 39,这两个质数的积是() 。 分析本题考查的是质数的意义及数的奇偶性等知识。两个数的和是 39,说明这两个数一个数是奇数,一个数是偶数, 因为它们都是质数,所以其中的偶数只能是 2,则奇数是 39237, 37×274。解 答 74(2) 120 的因数有( )个。分析 求一个较小数的因数的个数一般用列举法,但求较大数的因数的个数时,一般用分解质因数法,即先把 120 分解质因数:1202×2×2×3×5,然后借助每个因数的个数来计算。因数 2 的个数是 3 个,因数 3 的个数是 1 个,因数 5 的个数也是 1 个,120 的因数的个数为(31)×(11)×(11)16(个)。解答16探究活动 1课件出示题目。(1) 一个长方体木块,长 2.7 m,宽 1.8 m,高 1.5 m。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?(2) 学校六年级有若干名同学排队做操,3 人一行余 2 人,7 人一行余 2 人,11 人一行也余 2 人。六年级最少有多少人?2明确探究要求。(小组合作、思考、交流) (1)这两道题分别考查什么知识?(2) 怎样解决这两个问题?(3) 具体的解答过程是怎样的? 3汇报。(1) 先汇报前两个问题。预设生 1:第(1)题考查的是应用因数的知识解决问题的能力。生 2:第(2)题考查的是应用倍数的知识解决问题的能力。生 3:根据题意,正方体的最大棱长应该是长方体长、宽、高的最大公因数,所以先把相关长度转换单位,用整数表示,然后求长、宽、高的最大公因数。生 4:根据题意,六年级人数比3、7、11 的最小公倍数多 2,所以先求出 3、7、11 的最小公倍数,再加 2 就可以了。(2) 尝试解答。(关注学生求三个数的最大公因数或最小公倍数的情况,发现问题并及时点拨)(3) 汇报解答过程。(指名板演,集体订正) 预设生 1:2.7 m27 dm,1.8 m18 dm,1.5 m15 dm。因为 27、18、15 的最大公因数是 3,所以正方体的棱长最大是 3 dm。生 2:因为 3、7、11 的最小公倍数是 3×7×11231,2312233(人),所以六年级最少有 233 人。4小结。解答此类问题,关键要弄清考查的是因数的知识还是倍数的知识,同时要会求两个或三个数的最大公因数及最小公倍数。课堂总结通过本节课的学习,掌握了因数与倍数的相关知识,我们学会应用这些知识解决实际问题,学以致用。布置作业教材 75 页 5、9 题。板书设计因数、倍数、质数、合数ìï质数质因数í合数分解质因数1ï因数和倍数îì互质数公因数íî最大公因数倍数公倍数最小公倍数能被2、5、3整除的数的特征。教学反思:(2)数的运算第 1 课时四则运算课前准备教具准备PPT 课件教学过程谈话揭题我们学过哪些运算?这些运算的意义是怎样的?相关的知识都有哪些呢?这节课,我们就来系统地归纳、整理四则运算的知识。(板书课题:四则运算)回顾与整理1. 四则运算的意义。(1) 谁能结合算式,举例说明每种运算的含义?(注意引导学生全面思考,配合学生回答,教师完成下表)四则运算加法减法乘法除法举例112821128212×81.2×51 118××5 251112÷8÷25意义把两个数合并成一个数的运算。已知两个加数的和与其中的一个加数,求另一个加数的运算。求几个相同加数的和的简便运算。求一个数的几分之几是多少的运算。已知两个因数的积与其中一个因数,求另一个因数的运算。(2) 整数、分数、小数运算的哪些意义相同?哪些意义有拓展? 预设生 1:整数、分数、小数的加法、减法、除法意义相同。生 2:乘法的意义在小数乘法和分数乘法中有拓展。(3) 谁知道加法、减法、乘法、除法相互间的关系?(加法是最基本的运算,整数乘法是“求几个相同加数的和的简便运算”,除法和减法分别是乘法和加法的逆运算)(4) 如何应用这些关系对加法、减法或乘法、除法进行验算?(加法用减法验算,减法用加法验算,乘法用除法验算,除法用乘法验算)2. 四则运算的计算法则。(1)加、减法的计算法则。整数、小数加、减法的计算法则是什么?分数加、减法的计算法则是什么?它们有什么相同点?(教师结合学生回答,完成下面的表格)名 称 整数加、减法小数加、减法分数加、减法不同点加、减时,数位对齐。加、减时,小数点对齐。加、减时,分数单位相同。相同点计数单位相同才能直接相加减。(2)乘、除法的计算法则。师结合学生的回答,明确整数、小数、分数乘、除法的计算法则。3四则运算中的一些特殊情况。结合下题,想一想 0 与 1 在四则运算中有哪些特性。a0()a×0()0÷a()a0()a×1()a÷a()aa()a÷1()1÷a() (引导学生完成本题,当 a 作除数时不能为 0) 4四则运算的运算顺序。(1) 在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做二级运算,后做一级运算。(2) 在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。典型例题解析1课件出示例 1。已知:求:a×b?a÷b?分析本题是对小数乘、除法计算的深入考查。在计算 a×b 时, 一定要注意小数点的位置,在计算 a÷b 时,可以根据小数点变化引起小数大小变化的规律或除法的基本性质,把小数除法转化成整数除法。2课件出示例 2。5æ531ö 计算: ÷ç ÷8è842ø分析本题考查的是学生对四则运算运算顺序的掌握情况。55看到本题,学生可能会受 ÷ 1 的误导,错误地用“分配律”885æ531ö5553515计算为 ÷ç ÷ ÷ ÷ ÷ ,本题是 除以几个数的和, 8è842ø888482855不是 乘几个数的和,因此应先算括号里面的加法,再用 除以括号里88的结果。解答5æ531ö÷ç ÷8è842ø515 ÷8813探究活动 1课件出示探究课题。47æ3ö598è8ø63÷ ç ÷,求出中的数。2. 小组合作,分析、讨论本题的解题思路。3. 试做,组交流、对照计算结果后,推荐正确者板演。4. 正确解答。47æ3ö5÷ ç ÷98è8ø6348æ3ö5× ç ÷97è8ø6332æ3ö5ç ÷63è8ø6333 8733 783565. 小结。通过对本题的探究,大家对四则运算的每一种运算中各部分之间的关系都有了比较明确的了解,希望以后大家可以灵活运用这些知识正确地解决相关问题。课堂总结关于四则运算你还有什么不明白的吗?布置作业1. 教材 76 页“做一做”。2. 教材 79 页 2、4 题。板书设计ì意义四则运算ïì计数单位相同才能直接相加、减。í法则í甲数除以乙数(0除外),等于甲数乘乙ï四则运算îî数的倒数。特性运算顺序教学反思:第 2 课时简便运算课前准备教具准备PPT 课件教学过程谈话导入上节课,我们复习了四则运算的意义、运算顺序等知识,如何保证在四则运算时,既做到结果准确,又做到过程简便呢?这节课我们来复习运用相关运算定律和性质来进行简便运算。(板书课题:简便运算)回顾与整理 1运算定律、性质。(1)在学习四则运算时,我们学过哪些运算定律?(学生对所学的五条运算定律基本掌握,引导学生通过填表,进行整理。学生口答,教师课件演示)名称举例用字母表示加法交换律15282815abba加法结合律(35)73(57)(ab)ca(bc)乘法交换律5×99×5a×bb×a乘法结合律(7×8)×57×(8×5)(a×b)×ca×(b×c)乘法分配律(54)×65×64×6 (2)复习减法和除法的运算性质。减法运算性质。(ab)×ca×cb×c从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即abca(bc)。另外a(bc)abc,a(bc)acb。除法运算性质。a÷b÷ca÷(b×c)a÷(b÷c)a÷b×c(ab)÷ca÷cb÷c(ab)÷ca÷cb÷c学会了这些运算定律和运算性质,我们就可以根据某些算式的特点,灵活地运用这些知识进行简便运算了。2简便运算。关于简算,除了运用定律和运算性质,你还知道哪些方法?请举例说一说。(引导学生在举例中掌握方法)预设生 1:利用和、差、积、商的变化规律进行简算。例如:0.8×40.3×80.8×40.8×35.6。生 2:利用特殊数相乘法进行简算。例如:利用 4×25、8×25、125×4、125×8 等进行简算。生 3:利用拆数法进行简算。例如:75×323×25×4×8;125×33125×(321);55×5555(561)×。56565×11×6×11生 4:利用约分进行简算。例如:55×66÷12111×1130。生 5:利用拆项进行简算。例如:111111 , 。2×3233×434典型例题解析1课件出示例 1。814简算:×558×2323分析本题考查的是学生的简算能力。两个乘法算式中的分母都148是 23,并且都有数字 8,因为 8×14×,所以用这种“换”的2323方法变出一个共同因数,就可以使计算简便。814解答×558× 232388×5514× 23238(5514)×23

    注意事项

    本文(人教版六年级下册数学总复习教案设计.docx)为本站会员(暗伤)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开