教师资格之中学数学学科知识与教学能力题库精选题库含答案(典型题).docx
-
资源ID:90472817
资源大小:49.34KB
全文页数:44页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
教师资格之中学数学学科知识与教学能力题库精选题库含答案(典型题).docx
教师资格之中学数学学科知识与教学能力题库精选题库含答案(典型题)第一部分 单选题(50题)1、提出“一笔画定理”的数学家是( )。A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】: C 2、患者,男,51岁。尿频、尿痛间断发作2年,下腹隐痛、肛门坠胀1年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为1.76mmol/L,B超显示前列腺增大。选择前列腺癌的肿瘤标志A.PSAB.CEAC.SCCD.CA125E.CA19-9【答案】: A 3、义务教育数学课程标准(2011年版)提出的课程标准包括,通过义务教育阶段的数学学习,学生能养成良好的学习习惯,良好的学习习惯指勤奋、独立思考、合作交流和( )。A.反思质疑B.坚持真理C.修正错误D.严谨求是【答案】: A 4、再次免疫应答的主要抗体是A.IgGB.IgAC.IgMD.IgE.IgD【答案】: A 5、( )著有几何原本。A.阿基米德B.欧几里得C.泰勒斯D.祖冲之【答案】: B 6、证明通常分成直接法和间接法,下列证明方式属于间接法的是( )。A.分析法B.综合法C.反证法D.比较法【答案】: C 7、教学的首要任务是( )A.培养全面发展的新人B.培养社会主义品德和审美情操,奠定学生的科学世界观基础C.引导学生掌握科学文化基础知识和基本技能D.发展学生智力、体力和创造技能【答案】: C 8、设 a,b 为非零向量,下列命题正确的是( ) A.a× b 垂直于 aB.a× b 平行于 aC.a·b 平行于 aD.a·b 垂直于 a【答案】: A 9、患儿,男,7岁。患血友病5年,多次使用因子进行治疗,近2个月反复发热,口服抗生素治疗无效。实验室检查:Anti-HIV阳性。选择符合HIV诊断的结果A.CD4T细胞,CD8T细胞,CD4/CD8正常B.CD4细胞,CD8T细胞正常,CD4/CD8C.CD4T细胞正常,CD8T细胞,CD4/CD8D.CD4T细胞,CD8T细胞正常,CD4/CD8E.CD4T细胞正常,CD8T细胞,CD4/CD8【答案】: B 10、下列关于椭圆的论述,正确的是()。A.平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比小于 1 的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D.平面与圆柱面的截线是椭圆【答案】: C 11、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】: A 12、骨髓涂片中见异常幼稚细胞占40%,这些细胞的化学染色结果分别是:POX(-),SB(-),AS-D-NCE(-),-NBE(+),且不被NaF抑制,下列最佳选择是A.急性单核细胞性白血病B.组织细胞性白血病C.急性粒细胞性白血病D.急性早幼粒白血病E.粒-单细胞性白血病【答案】: B 13、义务教育阶段的数学课程应该具有( )。 A.基础性、普及性、发展性B.实践性、普及性、选拔性C.基础性、实践性、选拔性D.实践性、普及性、发展性【答案】: A 14、国际标准品属于A.一级标准品B.二级标准品C.三级标准品D.四级标准品E.五级标准品【答案】: A 15、重症肌无力的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面TSH受体E.肾上腺皮质细胞【答案】: B 16、5-HT存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: B 17、普通高中数学课程标准(2017年版)指出高中数学课程分为哪几种课程?( )A.必修课程、选修课程B.必修课程、选择性必修课程、选修课程C.选修课程、选择性必修课程D.必修课程、选择性必修课程【答案】: B 18、属于所有T细胞共有的标志性抗原的是A.CD2B.CD3C.CD4D.CD8E.CD20【答案】: B 19、编制数学测试卷的步骤一般为( )。A.制定命题原则,明确测试目的,编拟双向细目表,精选试题B.明确测试目的,制定命题原则,精选试题,编拟双向细目表C.明确测试目的,制定命题原则,编拟双向细目表,精选试题D.明确测试目的,编拟双向细目表,精选试题 ,制定命题原则【答案】: B 20、肝素酶存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: D 21、就红细胞生成素(EP)而言,下述错误的是( )A.是一种糖蛋白,主要由肾产生,而人工无制备B.能刺激造血多能干细胞,使形成红细胞系祖细胞C.能促进幼红细胞增殖和成熟D.缺氧状态时,肾产生红细胞素增加E.胎儿时期肝脏也可产生【答案】: A 22、患者,女,25岁。因咳嗽、发热7天就诊。查体T37.8,右上肺闻及啰音,胸片示右肺上叶见片状阴影。结核菌素试验:红肿直径大于20mm。该患者可能为A.对结核分枝杆菌无免疫力B.处于结核病恢复期C.处于结核病活动期D.注射过卡介苗E.处于结核分枝杆菌早期感染【答案】: C 23、增生性贫血时不出现的是( )A.血片中可见形态、染色、大小异常的红细胞B.外周血红细胞、血红蛋白减低C.血片中原粒细胞>5%D.外周血网织红细胞>5%E.血片中可出现幼红细胞,多染性或嗜碱性细胞【答案】: C 24、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 25、型超敏反应A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】: C 26、患者,男,51岁。尿频、尿痛间断发作2年,下腹隐痛、肛门坠胀1年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为1.76mmol/L,B超显示前列腺增大。肿瘤病人的机体免疫状态A.免疫防御过高B.免疫监视低下C.免疫自稳失调D.免疫耐受增强E.免疫防御低下【答案】: B 27、AT-抗原测定多采用A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】: C 28、血小板聚集诱导剂是A.血栓收缩蛋白B.ADP、血栓烷AC.D.GPb或GPaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】: B 29、下列数学概念中,用“属概念加和差”方式定义的是( )。A.正方形B.平行四边形C.有理数D.集合【答案】: B 30、血小板生存期缩短见于下列哪种疾病A.维生素K缺乏症B.原发性血小板减少性紫癜C.蒙特利尔血小板综合征D.血友病E."蚕豆病"【答案】: B 31、与巨幼细胞性贫血无关的是A.中性粒细胞核分叶增多B.中性粒细胞核左移C.MCV112159flD.MCH3249pgE.MCHC0.320.36【答案】: B 32、36个月胚胎的主要造血器官是A.骨髓B.脾脏C.卵黄囊D.肝脏E.胸腺【答案】: D 33、下列划分正确的是()。A.有理数包括整数、分数和零B.角分为直角、象限角、对顶角和同位角C.数列分为等比数列、等差数列、无限数列和递减数列D.平行四边形分为对角线互相垂直的平行四边形和对角线不互相垂直的平行四边形【答案】: D 34、在讲解“垂线”一课时,教师自制教具,将两根木条钉在一起并固定其中一根木条a,转动木条b,让学生观察,从而导入新课。这种导入方式属于( )。A.实例导入B.直观导入C.悬念导入D.故事导入【答案】: B 35、在下列描述课程目标的行为动词中,要求最高的是( )。A.理解B.了解C.掌握D.知道【答案】: C 36、高中数学课程是义务教育阶段后普通高级中学的主要课程,具有( )。A.基础性、选择性和发展性B.基础性、选择性和实践性C.基础性、实践性和创新性D.基础性、选择性和普适性【答案】: A 37、正常人外周血经PHA刺激后,其T细胞转化率是A.1030B.7090C.5070D.6080E.3050【答案】: D 38、“三角形内角和180° ”,其判断的形式是( ).A.全称肯定判断B.全称否定判断C.特称肯定判断D.特称否定判断【答案】: A 39、义务教育课程的总目标是从( )方面进行阐述的。A.认识,理解,掌握和解决问题B.基础知识,基础技能,问题解决和情感C.知识,技能,问题解决,情感态度价值观D.知识与技能,数学思考,问题解决和情感态度【答案】: D 40、贫血患者,轻度黄疸,肝肋下2cm。检验:血红蛋白70g/L,网织红细胞8%;血清铁14.32mol/L(80g/dl),ALT正常;Coombs试验(+)。诊断首先考虑为A.黄疸型肝炎B.早期肝硬化C.缺铁性贫血D.自身免疫性溶血性贫血E.肝炎合并继发性贫血【答案】: D 41、骨髓细胞形态学检查的禁忌证是A.脂质沉积病B.肝硬化患者C.脾功能亢进D.晚期妊娠的孕妇E.化疗后肿瘤患者【答案】: D 42、Th2辅助性T细胞主要分泌的细胞因子不包括A.IL-2B.IL-4C.IL-5D.IL-6E.IL-10【答案】: A 43、高中数学学习评价关注学生知识技能的掌握,更关注数学学科( )的形式和发展,制定学科合理的学业质量要求,促进学生在不同学习阶段数学学科核心素养水平的达成。A.核心素养B.数学能力C.数学方法D.数学技能【答案】: A 44、外伤时,引起自身免疫性交感性眼炎A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细胞异常增殖【答案】: A 45、下列描述为演绎推理的是( )。 A.从-般到特殊的推理B.从特殊到-般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 46、设?(x)为a,b上的连续函数,则下列命题不正确的是( )(常考)A.?(x)在a,b上有最大值B.?(x)在a,b上一致连续C.?(x)在a,b上可积D.?(x)在a,b上可导【答案】: D 47、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。同卵双生兄弟间的器官移植属于A.自身移植B.同系移植C.同种移植D.异种移植E.胚胎组织移植【答案】: B 48、维生素K缺乏和肝病导致凝血障碍,体内因子减少的是A.、B.、C.、D.、E.、【答案】: A 49、实验室常用的补体灭活方法是A.45,30minB.52,30minC.56,30minD.50,25minE.37,25min【答案】: C 50、对高中数学的评价,下列说法错误的是( )。A.重视对学生数学学习过程的评价B.正确评价学生的数学基础知识和基本技能C.重视对学生能力的评价D.实施促进学生发展的单一化评价【答案】: D 第二部分 多选题(50题)1、下列语句是命题的是( )。A.B.C.D.【答案】: D 2、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】:本题主要考查合情推理与演绎推理的概念及关系。 3、义务教育数学课程标准(2011年版)附录中给出了两个例子:例1.计算15×15,25×25,95×95,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:1×2=2,2×3=6,3×4=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】:本题主要考查考生对于新授课教学设计的能力。 4、丝氨酸蛋白酶抑制因子是A.血栓收缩蛋白B.ADP、血栓烷AC.D.GPb或GPaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】: C 5、日本学者Tonegawa最初证明BCR在形成过程中( )A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】: D 6、义务教育阶段的数学课程应该具有( )。 A.基础性、普及性、发展性B.实践性、普及性、选拔性C.基础性、实践性、选拔性D.实践性、普及性、发展性【答案】: A 7、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8分)(2)确定“弧度制”的教学目标和教学重难点;(10分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12分)【答案】: 8、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】:本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。 9、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】:本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。 10、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】:本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。 11、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】: 12、患者,女,25岁。因咳嗽、发热7天就诊。查体T37.8,右上肺闻及啰音,胸片示右肺上叶见片状阴影。结核菌素试验:红肿直径大于20mm。该患者可能为A.对结核分枝杆菌无免疫力B.处于结核病恢复期C.处于结核病活动期D.注射过卡介苗E.处于结核分枝杆菌早期感染【答案】: C 13、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】:本题主要考查对“数学化”的理解。 14、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋白免疫分析仪根据监测角度的不同分为A.免疫透射和散射浊度分析B.免疫散射浊度分析C.免疫透射浊度分析D.免疫乳胶浊度分析E.速率和终点散射浊度测定【答案】: A 15、 抛掷两粒正方体骰子(每个面上的点数分别为1, 2, . 6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于5的概率为()A.5/36B.1/9C.1/12D.1/18【答案】: B 16、人体内最不稳定的凝血因子是A.因子B.因子C.因子D.因子E.因子【答案】: B 17、下面是某位老师引入“负数”概念的教学片段。师:我们当地7月份的平均气温是零上28,l月份的平均气温是零下3,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28减去零下3,得到的答案是31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28,我们常说成28,可用28表示,但是零下3不能说成3呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c。这时,零下3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】:(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。 18、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】:(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。 19、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】: C 20、义务教育数学课程标准(2011年版)附录中给出了两个例子:例1.计算15×15,25×25,95×95,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:1×2=2,2×3=6,3×4=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】:本题主要考查考生对于新授课教学设计的能力。 21、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】:本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性 22、儿茶酚胺是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】: D 23、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 24、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(4817×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17;2x+4y=48。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)【答案】:(1)解法一所体现的算法是:S1假设没有小兔则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)÷2;S5小鸡的只数为n-(m-2n)÷2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。 25、外周免疫器官包括A.脾脏、淋巴结、其他淋巴组织B.扁桃腺、骨髓、淋巴结C.淋巴结、骨髓、脾脏D.胸腺、脾脏、粘膜、淋巴组织E.腔上囊、脾脏、【答案】: A 26、5-HT存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: B 27、正常情况下血液中不存在的是A.因子B.因子C.因子D.因子E.因子【答案】: A 28、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】: C 29、患者,女,35岁。发热、咽痛1天。查体:扁桃体度肿大,有脓点。实验室检查:血清ASO水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。尿蛋白电泳发现以清蛋白增高为主,其蛋白尿的类型为A.肾小管性蛋白尿B.肾小球性蛋白尿C.混合性蛋白尿D.溢出性蛋白尿E.生理性蛋白尿【答案】: B 30、以普通高中课程标准实验教科书·数学1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的学习目标;(8分)(4)简要给出集合主要内容的教学设计思路与方法。(12分)【答案】: 31、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】:本题主要考查对“数学化”的理解。 32、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】: 33、以普通高中课程标准实验教科书·数学1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的学习目标;(8分)(4)简要给出集合主要内容的教学设计思路与方法。(12分)【答案】: 34、下面是某位老师引入“负数”概念的教学片段。师:我们当地7月份的平均气温是零上28,l月份的平均气温是零下3,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28减去零下3,得到的答案是31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28,我们常说成28,可用28表示,但是零下3不能说成3呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c。这时,零下3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】:(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。 35、肝素酶存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: D 36、日本学者Tonegawa最初证明BCR在形成过程中( )A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】: D 37、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 38、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】:本题主要考查合情推理与演绎推理的概念及关系。 39、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(4817×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17;2x+4y=48。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)