2022年山东济南中考数学试题级答案.docx
年寒窗苦读日,只盼金榜题名时,祝你考试拿高分,鲤鱼跳龙门!加油!2022年山东济南中考数学试题级答案选择题部分 共48分一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1. 7的相反数是()A. 7B. 7C. D. 【答案】B【解析】【分析】据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可【详解】解:根据概念,7的相反数是7故选:B【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是02. 如图是某几何体的三视图,该几何体是( )A. 圆柱B. 球C. 圆锥D. 正四棱柱【答案】A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:主视图和左视图都是长方形,那么此几何体为柱体,由俯视图为圆,可得此几何体是圆柱故选:A【点睛】此题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体3. 神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回将数字356000用科学记数法表示为( )A. B. C. D. 【答案】A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1|a|10,n为整数,且n比原来的整数位数少1,据此判断即可【详解】解:3560003.56×105故选:A【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1|a|10,确定a与n的值是解题的关键4. 如图,点E在AB上,EC平分AED,若165°,则2的度数为( )A. 45°B. 50°C. 57.5°D. 65°【答案】B【解析】【分析】根据平行线及角平分线的性质即可求解【详解】解: ,AEC=1(两直线平行,内错角相等),EC平分AED,AEC=CED=1,1=65°,CED =1=65°,2=180°-CED -1=180°-65°-65°=50°故选:B【点睛】本题考查了平行线的性质,解题关键根据直线平行和角平分线的性质得出角度之间的关系即可得出答案5. 下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 【答案】B【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形以及轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合6. 实数a,b在数轴上对应点的位置如图所示,下列结论正确的是( )A. B. C. D. 【答案】D【解析】【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解【详解】解:根据图形可以得到:,故A项错误,故B项错误,故C项错误,故D项错误故选:D【点睛】本题考查了数轴与实数的关系,理解并正确运用是解题的关键7. 某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是( )A. B. C. D. 【答案】C【解析】【分析】画树状图,共有9种等可能的结果,其中小明和小刚恰好选择同一个主题结果有3种,再由概率公式求解即可【详解】解:把“5G时代”、“北斗卫星”、“高铁速度”三个主题分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中小明和小刚恰好选择同一个主题的结果有3种,小明和小刚恰好选择同一个主题的概率为故选:C【点睛】本题考查了用树状图法求概率树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比8. 若mn2,则代数式的值是( )A. 2B. 2C. 4D. 4【答案】D【解析】【分析】先因式分解,再约分得到原式2(m-n),然后利用整体代入的方法计算代数式的值【详解】解:原式2(m-n),当m-n2时,原式2×24故选:D【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值在化简的过程中要注意运算顺序和分式的化简化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式9. 某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 反比例函数关系D. 二次函数关系【答案】B【解析】【分析】根据矩形周长找出关于x和y的等量关系即可解答【详解】解:根据题意得:,y与x满足的函数关系是一次函数;故选:B【点睛】本题通过矩形的周长考查一次函数的定义,解题的关键是理清实际问题中的等量关系准确地列式10. 如图,矩形ABCD中,分别以A,C为圆心,以大于的长为半径作弧,两弧相交于M,N两点,作直线MN分别交AD,BC于点E,F,连接AF,若BF3,AE5,以下结论错误的是( )A. AFCFB. FACEACC. AB4D. AC2AB【答案】D【解析】【分析】根据作图过程可得,是垂直平分线,再由矩形的性质可以证明,可得再根据勾股定理可得AB的长,即可判定得出结论【详解】解:A,根据作图过程可得,是的垂直平分线,故此选项不符合题意B,如图,由矩形的性质可以证明,是的垂直平分线,故此选项不符合题意C,在中故此选项不符合题意D,故此选项符合题意故选:D【点睛】本题考查了作图-基本作图,线段垂直平分线的性质、矩形的性质、勾股定理,解决本题的关键是掌握基本作图方法11. 数学活动小组到某广场测量标志性建筑AB高度如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )(精确到1m参考数据:,)A. 28mB. 34mC. 37mD. 46m【答案】C【解析】【分析】在RtABD中,解直角三角形求出,在RtABC中,解直角三角形可求出AB【详解】解:在RtABD中,tanADB,在RtABC中,tanACB,解得:m,故选:C【点睛】本题考查了解直角三角形的应用,熟练掌握正切函数的定义是解题的关键12. 抛物线与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点,为图形G上两点,若,则m的取值范围是( )A. 或B. C. D. 【答案】D【解析】【分析】求出抛物线的对称轴、C点坐标以及当x=m-1和x=m+1时的函数值,再根据m-1m+1,判断出M点在N点左侧,此时分类讨论:第一种情况,当N点在y轴左侧时,第二种情况,当M点在y轴的右侧时,第三种情况,当y轴在M、N点之间时,来讨论,结合图像即可求解【详解】抛物线解析式变形为:,即抛物线对称轴为,当x=m-1时,有,当x=m+1时,有,设(m-1,1)为A点,(m+1,1)为B点,即点A(m-1,1)与B(m+1,1)关于抛物线对称轴对称,当x=0时,有,C点坐标为,当x=m时,有,抛物线顶点坐标为,直线ly轴,直线l为,m-1m+1,M点在N点左侧,此时分情况讨论:第一种情况,当N点在y轴左侧时,如图,由图可知此时M、N点分别对应A、B点,即有,此时不符合题意;第二种情况,当M点在y轴的右侧时,如图,由图可知此时M、N点满足,此时不符合题意;第三种情况,当y轴在M、N点之间时,如图, 或者 ,由图可知此时M、N点满足,此时符合题意;此时由图可知:,解得,综上所述:m的取值范围为:,故选:D【点睛】本题考查了二次函数的图像与性质、翻折的性质,注重数形结合是解答本题的关键非选择题部分 共102分二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案)13. 因式分解:_【答案】【解析】【分析】原式利用完全平方公式分解即可【详解】解:故答案为:【点睛】此题考查了公式法的运用,熟练掌握因式分解的方法是解本题的关键14. 如果小球在如图所示的地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域的概率是_【答案】【解析】【分析】根据题意可得一共有9块方砖,其中阴影区域的有4块,再根据概率公式计算,即可求解【详解】解:根据题意得:一共有9块方砖,其中阴影区域的有4块,它最终停留在阴影区域的概率是故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键15. 写出一个比大且比小的整数 _【答案】3(答案不唯一)【解析】【分析】先对和进行估算,再根据题意即可得出答案【详解】解:234,比大且比小的整数有2,3,4.故答案为:3(答案不唯一)【点睛】此题考查了估算无理数的大小,估算出与是解题的关键16. 代数式与代数式的值相等,则x_【答案】7【解析】【分析】根据题意列出分式方程,求出方程的解,得到x的值即可【详解】解:代数式与代数式的值相等,去分母,去括号号,解得,检验:当时,分式方程的解为故答案为:7【点睛】本题考查了解分式方程,利用了转化思想,解分式方程注意要检验17. 利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法如图1,BD是矩形ABCD的对角线,将BCD分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a4,b2,则矩形ABCD的面积是_【答案】16【解析】【分析】设小正方形的边长为,利用、表示矩形的面积,再用、表示三角形以及正方形的面积,根据面积列出关于、的关系式,解出,即可求出矩形面积【详解】解:设小正方形的边长为,矩形的长为 ,宽为 ,由图1可得:,整理得:, ,矩形的面积为 故答案为:16【点睛】本题主要考查列代数式,一元二次方程的应用,求出小正方形的边长是解题的关键18. 规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它绕原点顺时针旋转90°,由数字0和1组成的序列表示一个点按照上面描述依次连续变换例如:如图,点按序列“011”作变换,表示点O先向右平移一个单位得到,再将绕原点顺时针旋转90°得到,再将绕原点顺时针旋转90°得到依次类推点经过“011011011”变换后得到点的坐标为_【答案】【解析】【分析】根据题意得出点坐标变化规律,进而得出变换后的坐标位置,进而得出答案【详解】解:点按序列“011011011”作变换,表示点先向右平移一个单位得到,再将绕原点顺时针旋转90°得到,再将绕原点顺时针旋转90°得到,然后右平移一个单位得到,再将绕原点顺时针旋转90°得到,再将绕原点顺时针旋转90°得到,然后右平移一个单位得到,再将绕原点顺时针旋转90°得到,再将绕原点顺时针旋转90°得到故答案为:【点睛】此题主要考查了点的坐标变化规律,得出点坐标变化规律是解题关键三、解答题(本大题共9个小题,共78分解答应写出文字说明、证明过程或演算步骤)19. 计算:【答案】6【解析】【分析】先根据绝对值的意义,特殊角的三角函数值,负整数指数幂,算术平方根定义进行化简,然后再进行计算即可【详解】解:【点睛】本题主要考查了实数的混合运算,熟练掌握绝对值的意义,特殊角的三角函数值,负整数指数幂,算术平方根定义,是解题的关键20. 解不等式组:,并写出它的所有整数解【答案】,整数解为1,2【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而确定出整数解即可【详解】解不等式,得,解不等式,得,在同一条数轴上表示不等式的解集原不等式组的解集是,整数解为1,2【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键21. 已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,ADFCDE求证:AECF【答案】见解析【解析】【分析】根据菱形的性质得出,再利用角的等量代换得出,接着由角边角判定,最后由全等的性质即可得出结论【详解】解:四边形是菱形,E,F是对角线AC上两点,即在和中,【点睛】本题考查菱形的性质,全等三角形的判定和性质,解题的关键是熟练地掌握这些性质和判定定理,并能从题中找到合适的条件进行证明22. 某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a:七年级抽取成绩的频数分布直方图如图(数据分成5组,)b:七年级抽取成绩在7这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79c:七、八年级抽取成绩的平均数、中位数如下:年级平均数中位数七年级76.5m八年级78.279请结合以上信息完成下列问题:(1)七年级抽取成绩在的人数是_,并补全频数分布直方图;(2)表中m的值为_;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则_(填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数【答案】(1)38,理由见解析 (2)77 (3)甲 (4)七年级竞赛成绩90分及以上人数约为64人【解析】【分析】(1)根据题意及频数分布直方图即可得出结果;(2)根据中位数的计算方法求解即可;(3)由七八年级中位数与甲乙学生成绩的比较即可得出结果;(4)用总人数乘以七年级竞赛成绩90分及以上的学生人数占总的人数的比例求解即可【小问1详解】解:由题意可得:70x<80这组的数据有16人,七年级抽取成绩在60x<90的人数是:12+16+10=38人,故答案为:38;补全频数分布直方图如图所示;【小问2详解】解:4+12=16<25,4+12+16>25,七年级中位数在70x<80这组数据中,第25、26的数据分别为77,77,m=,故答案为:77;【小问3详解】解:七年级学生的中位数为77<78,八年级学生的中位数为79>78,甲的成绩在本年级抽取成绩中排名更靠前,故答案为:甲;【小问4详解】解:(人)答:七年级竞赛成绩90分及以上人数约为64人【点睛】题目主要考查统计的相关应用,包括频数分布直方图及用部分估计总体、中位数的求法等,理解题意,综合运用这些知识点是解题关键23. 已知:如图,AB为O的直径,CD与O相切于点C,交AB延长线于点D,连接AC,BC,D30°,CE平分ACB交O于点E,过点B作BFCE,垂足为F(1)求证:CACD;(2)若AB12,求线段BF的长【答案】(1)见解析 (2)【解析】【分析】(1)连接,欲证明CACD,只要证明即可(2)因为为直径,所以,可得出三角形CBF为等腰直角三角形,即可求出BF,由此即可解决问题【小问1详解】证明:连接与相切于点,所对的圆周角为,圆心角为,【小问2详解】为直径,在中,平分,【点睛】本题考查切线的性质,圆周角定理、解直角三角形等知识,解题的关键是灵活运用这些知识解决问题,学会条件常用辅助线,属于中考常考题型24. 为增加校园绿化面积,某校计划购买甲、乙两种树苗已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元(1)求甲、乙两种树苗每棵的价格分别是多少元?(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍,则购买甲、乙两种树苗各多少棵时花费最少?请说明理由【答案】(1)甲种树苗每棵40元,乙种树苗每棵30元 (2)当购买甲种树苗25棵,乙种树苗75棵时,花费最少,理由见解析【解析】【分析】(1)设每棵甲种树苗的价格为x元,每棵乙种树苗的价格y元,由“购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元”列出方程组,求解即可;(2)设购买甲种树苗棵,则购买乙种树苗棵,购买两种树苗总费用为元得出一次函数,根据一次函数的性质求解即可【小问1详解】设甲种树苗每棵元,乙种树苗每棵元由题意得,解得,答:甲种树苗每棵40元,乙种树苗每棵30元【小问2详解】设购买甲种树苗棵,则购买乙种树苗棵,购买两种树苗总费用为元,由题意得,由题意得,解得,因为随的增大而增大,所以当时取得最小值答:当购买甲种树苗25棵,乙种树苗75棵时,花费最少【点睛】本题考查了一次函数的应用,二元一次方程组的应用,找到正确的数量关系是本题的关键25. 如图,一次函数的图象与反比例函数的图象交于点,与y轴交于点B(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,ACAD,连接CB求ABC的面积;点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标【答案】(1),; (2)8;符合条件的点坐标是和【解析】【分析】(1)将点代入,求出,即可得,将点代入,即可求出k;(2)如图,过A作轴于点,过作轴于点,交于点,求出,得到CE,进一步可求出ABC的面积;设,分情况讨论:、当四边形为平行四边形时,、当四边形为平行四边形时,计算即可小问1详解】解:将点代入,得,将点代入,得,反比例函数的解析式为【小问2详解】解:如图,过A作轴于点,过作轴于点,交于点,分两种情况:设,、如图,当四边形为平行四边形时,点向下平移1个单位、向右平移个单位得到点,点向下平移1个单位,向右平移个单位得到点,、如图,当四边形为平行四边形时,点向上平移1个单位,向左平移个单位得到点,点向上平移1个单位,向左平移个单位得到点,综上所述,符合条件的点坐标是和【点睛】本题考查一次函数与反比例函数的综合,待定系数法求函数解析式,平行四边形的性质,解题的关键是掌握待定系数法求函数解析式,平行四边形的性质26. 如图1,ABC是等边三角形,点D在ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_;如图3,当点F为线段BC中点,且EDEC时,猜想BAD度数,并说明理由【答案】(1),理由见解析 (2);,理由见解析【解析】【分析】(1)利用等边三角形的性质和旋转的性质易得到,再由全等三角形的性质求解;(2)根据线段绕点A按逆时针方向旋转得到得到是等边三角形,由等边三角形的性质和(1)的结论来求解;过点A作于点G,连接AF,根据等边三角形的性质和锐角三角函数求值得到,进而得到,进而求出,结合,EDEC得到,再用等腰直角三角形的性质求解【小问1详解】解:证明:是等边三角形,线段绕点A按逆时针方向旋转得到,即在和中,;【小问2详解】解:理由:线段绕点A按逆时针方向旋转得到,是等边三角形,由(1)得,;过点A作于点G,连接AF,如下图是等边三角形,是等边三角形,点F为线段BC中点,即,即是等腰直角三角形,【点睛】本题主要考查了等边三角形的性质,旋转的性质,全等三角形的判定和性质,解直角三角形,相似三角形的判定和性质,等腰直角三角形的判定和性质,理解相关知识是解答关键27. 抛物线与x轴交于,两点,与y轴交于点C,直线ykx6经过点B点P在抛物线上,设点P的横坐标为m(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQBC,垂足为Q,求的最大值【答案】(1),t=3, (2)点 (3)【解析】【分析】(1)分别把代入抛物线解析式和一次函数的解析式,即可求解;(2)作轴于点,根据题意可得,从而得到,再根据,可求出m,即可求解;(3)作轴交于点,过点作轴于点,则,再根据,可得,然后根据,可得,从而得到,在根据二次函数的性质,即可求解【小问1详解】解:在抛物线上,抛物线解析式为,当时,(舍),在直线上,一次函数解析式为【小问2详解】解:如图,作轴于点,对于,令x=0,则y=-6,点C(0,-6),即OC=6,A(3,0),OA=3,点P的横坐标为m,CAP=90°,AOC=AMP=90°,即,(舍),点【小问3详解】解:如图,作轴交于点,过点作轴于点,点,PNx轴,PNy轴,PNQ=OCB,PQN=BOC=90°,ENy轴,ENx轴,即,当时,的最大值是【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,利用数形结合思想解答是解题的关键,是中考的压轴题