欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2016吉林中考数学真题(含答案).docx

    • 资源ID:90585279       资源大小:349.40KB        全文页数:21页
    • 资源格式: DOCX        下载积分:7.5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要7.5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2016吉林中考数学真题(含答案).docx

    年寒窗苦读日,只盼金榜题名时,祝你考试拿高分,鲤鱼跳龙门!加油!2016吉林中考数学真题及答案一、单项选择题:每小题2分,共12分1在0,1,2,3这四个数中,最小的数是()A0 B1 C2 D32习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A1.17×106B1.17×107C1.17×108D11.7×1063用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为()A B C D4计算(a3)2结果正确的是()Aa5Ba5Ca6Da65小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A(3a+4b)元 B(4a+3b)元 C4(a+b)元 D3(a+b)元6如图,阴影部分是两个半径为1的扇形,若=120°,=60°,则大扇形与小扇形的面积之差为()A B C D二、填空题:每小题3分,共24分7化简:=8分解因式:3x2x=9若x24x+5=(x2)2+m,则m=10某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为11如图,ABCD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若EMB=75°,则PNM等于度12如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB若FA=5,则FB=13如图,四边形ABCD内接于O,DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则BPD可能为度(写出一个即可)14在三角形纸片ABC中,C=90°,B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则DEF的周长为(用含a的式子表示)三、解答题:每小题5分,共20分15先化简,再求值:(x+2)(x2)+x(4x),其中x=16解方程: =17在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率18如图,菱形ABCD的对角线AC,BD相交于点O,且DEAC,AEBD求证:四边形AODE是矩形四、解答题:每小题7分,共28分19图1,图2都是8×8的正方形网格,每个小正方形的顶点成为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图1中所画的平行四边形的面积为20某校学生会为了解环保知识的普及情况,从该校随机抽取部分学生,对他们进行了垃圾分类了解程度的调查,根调查收集的数据绘制了如下的扇形统计图,其中对垃圾分类非常了解的学生有30人(1)本次抽取的学生有人;(2)请补全扇形统计图;(3)请估计该校1600名学生中对垃圾分类不了解的人数21如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)22如图,在平面直径坐标系中,反比例函数y=(x0)的图象上有一点A(m,4),过点A作ABx轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式五、解答题:每小题8分,共16分23甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示(1)甲的速度是km/h;(2)当1x5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距km24(1)如图1,在RtABC中,ABC=90°,以点B为中心,把ABC逆时针旋转90°,得到A1BC1;再以点C为中心,把ABC顺时针旋转90°,得到A2B1C,连接C1B1,则C1B1与BC的位置关系为;(2)如图2,当ABC是锐角三角形,ABC=(60°)时,将ABC按照(1)中的方式旋转,连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明;(3)如图3,在图2的基础上,连接B1B,若C1B1=BC,C1BB1的面积为4,则B1BC的面积为六、解答题:每小题10分,共20分25如图,在等腰直角三角形ABC中,BAC=90°,AC=8cm,ADBC于点D,点P从点A出发,沿AC方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQAB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且PQM=90°(点M,C位于PQ异侧)设点P的运动时间为x(s),PQM与ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围26如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点(1)当m=2时,a=,当m=3时,a=;(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当APQ为等腰直角三角形时,a和n的关系式为 a=;(4)利用(2)(3)中的结论,求AOB与APQ的面积比参考答案与试题解析一、单项选择题:每小题2分,共12分1在0,1,2,3这四个数中,最小的数是()A0 B1 C2 D3【考点】有理数大小比较【分析】直接利用负数小于0,进而得出答案【解答】解:在0,1,2,3这四个数中,最小的数是:2故选:C2习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A1.17×106B1.17×107C1.17×108D11.7×106【考点】科学记数法表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【解答】解:11700000用科学记数法表示为1.17×107,故选:B3用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为()A B C D【考点】简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:A4计算(a3)2结果正确的是()Aa5Ba5Ca6Da6【考点】幂的乘方与积的乘方【分析】原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断【解答】解:原式=a6,故选D5小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A(3a+4b)元 B(4a+3b)元 C4(a+b)元 D3(a+b)元【考点】列代数式【分析】直接利用两种颜色的珠子的价格进而求出手链的价格【解答】解:黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费为:3a+4b故选:A6如图,阴影部分是两个半径为1的扇形,若=120°,=60°,则大扇形与小扇形的面积之差为()A B C D【考点】扇形面积的计算【分析】利用扇形的面积公式分别求出两个扇形的面积,再用较大面积减去较小的面积即可【解答】解:=,故选B二、填空题:每小题3分,共24分7化简:=【考点】二次根式的加减法【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可【解答】解:原式=2=故答案为:8分解因式:3x2x=x(3x1)【考点】因式分解-提公因式法【分析】直接提取公因式x,进而分解因式得出答案【解答】解:3x2x=x(3x1)故答案为:x(3x1)9若x24x+5=(x2)2+m,则m=1【考点】配方法的应用【分析】已知等式左边配方得到结果,即可确定出m的值【解答】解:已知等式变形得:x24x+5=x24x+4+1=(x2)2+1=(x2)2+m,则m=1,故答案为:110某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为【考点】由实际问题抽象出二元一次方程组【分析】根据题意得到:A型电脑数量+B型电脑数量=10,A型电脑数量×5000+B型电脑数量×3000=34000,列出方程组即可【解答】解:根据题意得:,故答案为:11如图,ABCD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若EMB=75°,则PNM等于30度【考点】平行线的性质【分析】根据平行线的性质得到DNM=BME=75°,由等腰直角三角形的性质得到PND=45°,即可得到结论【解答】解:ABCD,DNM=BME=75°,PND=45°,PNM=DNMDNP=30°,故答案为:3012如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB若FA=5,则FB=5【考点】作图基本作图;线段垂直平分线的性质【分析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题【解答】解:由题意直线CD是线段AB的垂直平分线,点F在直线CD上,FA=FB,FA=5,FB=5故答案为513如图,四边形ABCD内接于O,DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则BPD可能为80度(写出一个即可)【考点】圆内接四边形的性质;圆周角定理【分析】连接OB、OD,根据圆内接四边形的性质求出DCB的度数,根据圆周角定理求出DOB的度数,得到DCBBPDDOB【解答】解:连接OB、OD,四边形ABCD内接于O,DAB=130°,DCB=180°130°=50°,由圆周角定理得,DOB=2DCB=100°,DCBBPDDOB,即50°BPD100°,BPD可能为80°,故答案为:8014在三角形纸片ABC中,C=90°,B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则DEF的周长为3a(用含a的式子表示)【考点】翻折变换(折叠问题)【分析】由折叠的性质得出BE=EF=a,DE=BE,则BF=2a,由含30°角的直角三角形的性质得出DF=BF=a,即可得出DEF的周长【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,BF=2a,B=30°,DF=BF=a,DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a三、解答题:每小题5分,共20分15先化简,再求值:(x+2)(x2)+x(4x),其中x=【考点】整式的混合运算化简求值【分析】根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x=代入化简后的式子,即可求得原式的值【解答】解:(x+2)(x2)+x(4x)=x24+4xx2=4x4,当x=时,原式=16解方程: =【考点】解分式方程【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【解答】解:去分母得:2x2=x+3,解得:x=5,经检验x=5是分式方程的解17在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率【考点】列表法与树状图法【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到的球都是红球的情况,再利用概率公式即可求得答案【解答】解:画树状图得:共有9种等可能的结果,摸到的两个球都是红球的有1种情况,两次摸到的球都是红球的概率=18如图,菱形ABCD的对角线AC,BD相交于点O,且DEAC,AEBD求证:四边形AODE是矩形【考点】矩形的判定;菱形的性质【分析】根据菱形的性质得出ACBD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形【解答】证明:四边形ABCD为菱形,ACBD,AOD=90°,DEAC,AEBD,四边形AODE为平行四边形,四边形AODE是矩形四、解答题:每小题7分,共28分19图1,图2都是8×8的正方形网格,每个小正方形的顶点成为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图1中所画的平行四边形的面积为6【考点】作图应用与设计作图;平行四边形的性质【分析】(1)根据平行四边形的判定,利用一组对边平行且相等的四边形为平行四边形可在图1和图2中按要求画出平行四边形;(2)根据平行四边形的面积公式计算【解答】解:(1)如图1,如图2;(2)图1中所画的平行四边形的面积=2×3=6故答案为620某校学生会为了解环保知识的普及情况,从该校随机抽取部分学生,对他们进行了垃圾分类了解程度的调查,根调查收集的数据绘制了如下的扇形统计图,其中对垃圾分类非常了解的学生有30人(1)本次抽取的学生有300人;(2)请补全扇形统计图;(3)请估计该校1600名学生中对垃圾分类不了解的人数【考点】扇形统计图;用样本估计总体【分析】(1)根据不了解的人数除以不了解的人数所占的百分比,可得的答案;(2)根据有理数的减法,可得答案;(3)根据样本估计总体,可得答案【解答】解:(1)30÷10%=300,故答案为:300;(2)如图,了解很少的人数所占的百分比130%10%20%=40%,故答案为:40%,(3)1600×30%=480人,该校1600名学生中对垃圾分类不了解的人数480人21如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)【考点】解直角三角形的应用-仰角俯角问题【分析】先利用平行线的性质得到B=43°,然后利用B的正弦计算AB的长【解答】解:如图,B=43°,在RtABC中,sinB=,AB=1765(m)答:飞机A与指挥台B的距离为1765m22如图,在平面直径坐标系中,反比例函数y=(x0)的图象上有一点A(m,4),过点A作ABx轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为m+2(用含m的式子表示);(2)求反比例函数的解析式【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;坐标与图形变化-平移【分析】(1)由点A(m,4),过点A作ABx轴于点B,将点B向右平移2个单位长度得到点C,可求得点C的坐标,又由过点C作y轴的平行线交反比例函数的图象于点D,CD=,即可表示出点D的横坐标;(2)由点D的坐标为:(m+2,),点A(m,4),即可得方程4m=(m+2),继而求得答案【解答】解:(1)A(m,4),ABx轴于点B,B的坐标为(m,0),将点B向右平移2个单位长度得到点C,点C的坐标为:(m+2,0),CDy轴,点D的横坐标为:m+2;故答案为:m+2;(2)CDy轴,CD=,点D的坐标为:(m+2,),A,D在反比例函数y=(x0)的图象上,4m=(m+2),解得:m=1,点a的横坐标为(1,4),k=4m=4,反比例函数的解析式为:y=五、解答题:每小题8分,共16分23甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示(1)甲的速度是60km/h;(2)当1x5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距220km【考点】一次函数的应用【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)求出乙距A地240km时的时间,乘以甲的速度即可得到结果【解答】解:(1)根据图象得:360÷6=60km/h;(2)当1x5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=90,则y乙=90x90;(3)令y乙=240,得到x=,则甲与A地相距60×=220km,故答案为:(1)60;(3)22024(1)如图1,在RtABC中,ABC=90°,以点B为中心,把ABC逆时针旋转90°,得到A1BC1;再以点C为中心,把ABC顺时针旋转90°,得到A2B1C,连接C1B1,则C1B1与BC的位置关系为平行;(2)如图2,当ABC是锐角三角形,ABC=(60°)时,将ABC按照(1)中的方式旋转,连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明;(3)如图3,在图2的基础上,连接B1B,若C1B1=BC,C1BB1的面积为4,则B1BC的面积为6【考点】几何变换综合题【分析】(1)根据旋转的性质得到C1BC=B1BC=90°,BC1=BC=CB1,根据平行线的判定得到BC1CB1,推出四边形BCB1C1是平行四边形,根据平行四边形的性质即可得到结论;(2)过C1作C1EB1C于E,于是得到C1EB=B1CB,由旋转的性质得到BC1=BC=B1C,C1BC=B1CB,等量代换得到C1BC=C1EB,根据等腰三角形的判定得到C1B=C1E,等量代换得到C1E=B1C,推出四边形C1ECB1是平行四边形,根据平行四边形的性质即可得到结论;(3)设C1B1与BC之间的距离为h,由已知条件得到=,根据三角形的面积公式得到=,于是得到结论【解答】解:(1)平行,把ABC逆时针旋转90°,得到A1BC1;再以点C为中心,把ABC顺时针旋转90°,得到A2B1C,C1BC=B1BC=90°,BC1=BC=CB1,BC1CB1,四边形BCB1C1是平行四边形,C1B1BC,故答案为:平行;(2)证明:如图,过C1作C1EB1C,交BC于E,则C1EB=B1CB,由旋转的性质知,BC1=BC=B1C,C1BC=B1CB,C1BC=C1EB,C1B=C1E,C1E=B1C,四边形C1ECB1是平行四边形,C1B1BC;(3)由(2)知C1B1BC,设C1B1与BC之间的距离为h,C1B1=BC,=,S=B1C1h,S=BCh,=,C1BB1的面积为4,B1BC的面积为6,故答案为:6六、解答题:每小题10分,共20分25如图,在等腰直角三角形ABC中,BAC=90°,AC=8cm,ADBC于点D,点P从点A出发,沿AC方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQAB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且PQM=90°(点M,C位于PQ异侧)设点P的运动时间为x(s),PQM与ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=4;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围【考点】三角形综合题【分析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,由此即可解决问题(2)如图1中,当点M落在AD上时,作PEQC于E,先证明DQ=QE=EC,由PEAD,得=,由此即可解决问题(3)分三种情形当0x4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为PEF,当4x时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ当x8时,如图4中,则重合部分为PMQ,分别计算即可解决问题【解答】解:(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,AP=CP=4,所以x=4故答案为4(2)如图1中,当点M落在AD上时,作PEQC于EMQP,PQE,PEC都是等腰直角三角形,MQ=PQ=PCDQ=QE=EC,PEAD,=,AC=8,PA=,x=÷=故答案为(3)当0x4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为PEF,AP=x,EF=PE=x,y=SPEF=PEEF=x2当4x时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQPQ=PC=8x,PM=162x,ME=PMPE=163x,y=SPMQSMEG=(8x)2(163x)2=x2+32x64当x8时,如图4中,则重合部分为PMQ,y=SPMQ=PQ2=(8x)2=x216x+64综上所述y=26如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点(1)当m=2时,a=,当m=3时,a=;(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当APQ为等腰直角三角形时,a和n的关系式为 a=;(4)利用(2)(3)中的结论,求AOB与APQ的面积比【考点】二次函数综合题【分析】(1)由AOB为等边三角形,AB=2m,得出点A,B坐标,再由点A,B,O在抛物线上建立方程组,得出结论,最后代m=2,m=3,求值即可;(2)同(1)的方法得出结论(3)由APQ为等腰直角三角形,PQ的长度为2n,设A(e,d+n),P(en,d),Q(e+n,d),建立方程组求解即可;(4)由(2)(3)的结论得到m=n,再根据面积公式列出式子,代入化简即可【解答】解:(1)如图1,点B在x轴正半轴上,OB的长度为2m,B(2m,0),以OB为边向上作等边三角形AOB,AM=m,OM=m,A(m, m),抛物线l:y=ax2+bx+c经过点O,A,B三点,当m=2时,a=,当m=3时,a=,故答案为:,;(2)a=理由:如图1,点B在x轴正半轴上,OB的长度为2m,B(2m,0),以OB为边向上作等边三角形AOB,AM=m,OM=m,A(m, m),抛物线l:y=ax2+bx+c经过点O,A,B三点,a=,(3)如图2,APQ为等腰直角三角形,PQ的长度为2n,设A(e,d+n),P(en,d),Q(e+n,d),P,Q,A,O在抛物线l:y=ax2+bx+c上,化简得,2aean+b=1,化简得,2aeanb=1,化简得,an=1,a=故答案为a=,(4)OB的长度为2m,AM=m,SAOB=OB×AM=2m×m=m2,由(3)有,AN=nPQ的长度为2n,SAPQ=PQ×AN=×2m×n=n2,由(2)(3)有,a=,a=,=,m=n,=,AOB与APQ的面积比为3:1

    注意事项

    本文(2016吉林中考数学真题(含答案).docx)为本站会员(wo****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开