欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高等数学第9章D98极值与最值.ppt

    • 资源ID:90604411       资源大小:740.11KB        全文页数:28页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高等数学第9章D98极值与最值.ppt

    目录 上页 下页 返回 结束 第九章 第八节第八节一、多元函数的极值一、多元函数的极值 二、最值应用问题二、最值应用问题 三、条件极值三、条件极值 多元函数的极值及其求法多元函数的极值及其求法目录 上页 下页 返回 结束 一、一、多元函数的极值多元函数的极值 定义定义:若函数则称函数在该点取得极大值例如例如:在点(0,0)有极小值;在点(0,0)有极大值;在点(0,0)无极值.极大值和极小值统称为极值,使函数取得极值的点称为极值点.的某邻域内有(极小值).目录 上页 下页 返回 结束 提示提示:由题设 例例1.已知函数(D)根据条件无法判断点(0,0)是否为f(x,y)的极值点.则()的某个邻域内连续,且A(2003 考研)目录 上页 下页 返回 结束 说明说明:使偏导数都为 0 的点称为驻点.例如,定理定理1(必要条件)函数偏导数,证证:据一元函数极值的必要条件可知定理结论成立.取得极值,取得极值取得极值 但驻点不一定是极值点.有驻点(0,0),但在该点不取极值.且在该点取得极值,则有存在故目录 上页 下页 返回 结束 时,具有极值定理定理2(充分条件)的某邻域内具有一阶和二阶连续偏导数,令则:1)当A0 时取极小值.2)当3)当证明见 第九节(P121).时,没有极值.时,不能确定,需另行讨论.若函数且目录 上页 下页 返回 结束 例例2.2.求函数解解:第一步第一步 求驻点求驻点.得驻点:(1,0),(1,2),(3,0),(3,2).第二步第二步 判别判别.在点(1,0)处为极小值;解方程组的极值.求二阶偏导数目录 上页 下页 返回 结束 在点(3,0)处不是极值;在点(3,2)处为极大值.在点(1,2)处不是极值;目录 上页 下页 返回 结束 例例3.讨论函数及是否取得极值.解解:显然(0,0)都是它们的驻点,在(0,0)点邻域内的取值,因此 z(0,0)不是极值.因此为极小值.正正负负0在点(0,0)并且在(0,0)都有 可能为目录 上页 下页 返回 结束 二、最值应用问题二、最值应用问题函数 f 在闭域上连续函数 f 在闭域上可达到最值 最值可疑点 驻点边界上的最值点特别特别,当区域内部最值存在,且只有一个只有一个极值点P 时,为极小值为最小值(大大)(大大)依据目录 上页 下页 返回 结束 例例4 4.解解:设水箱长,宽分别为 x,y m,则高为则水箱所用材料的面积为令得驻点某厂要用铁板做一个体积为2根据实际问题可知最小值在定义域内应存在,的有盖长方体水箱,问当长、宽、高各取怎样的尺寸时,才能使用料最省?因此可断定此唯一驻点就是最小值点.即当长、宽均为高为时,水箱所用材料最省.目录 上页 下页 返回 结束 例例5.有一宽为 24cm 的长方形铁板,把它折起来做成解解:设折起来的边长为 x cm,则断面面积x24一个断面为等腰梯形的水槽,倾角为,积最大.为问怎样折法才能使断面面目录 上页 下页 返回 结束 令解得:由题意知,最大值在定义域D 内达到,而在域D 内只有一个驻点,故此点即为所求.目录 上页 下页 返回 结束 三、条件极值三、条件极值极值问题无条件极值:条 件 极 值:条件极值的求法:方法方法1 代入法代入法.求一元函数的无条件极值问题对自变量只有定义域限制对自变量除定义域限制外,还有其它条件限制例如,转化目录 上页 下页 返回 结束 方法方法2 拉格朗日乘数法拉格朗日乘数法.分析:分析:如方法 1 所述,则问题等价于一元函数可确定隐函数的极故极值点必满足记例如例如,值问题,故有目录 上页 下页 返回 结束 引入辅助函数辅助函数F 称为拉格朗日(Lagrange)函数.利用拉格极值点必满足则极值点满足:朗日函数求极值的方法称为拉格朗日乘数法.目录 上页 下页 返回 结束 推广推广拉格朗日乘数法可推广到多个自变量和多个约束条件的情形.设解方程组可得到条件极值的可疑点.例如例如,求函数下的极值.在条件目录 上页 下页 返回 结束 例例6.要设计一个容量为则问题为求x,y,令解方程组解解:设 x,y,z 分别表示长、宽、高,下水箱表面积最小.z 使在条件水箱长、宽、高等于多少时所用材料最省?的长方体开口水箱,试问目录 上页 下页 返回 结束 得唯一驻点由题意可知合理的设计是存在的,长、宽为高的 2 倍时,所用材料最省.因此,当高为思考思考:1)当水箱封闭时,长、宽、高的尺寸如何?提示提示:利用对称性可知,2)当开口水箱底部的造价为侧面的二倍时,欲使造价 应如何设拉格朗日函数?长、宽、高尺寸如何?提示提示:长、宽、高尺寸相等.最省,目录 上页 下页 返回 结束 内容小结内容小结1.函数的极值问题函数的极值问题第一步 利用必要条件在定义域内找驻点.即解方程组第二步 利用充分条件 判别驻点是否为极值点.2.函数的条件极值问题函数的条件极值问题(1)简单问题用代入法如对二元函数(2)一般问题用拉格朗日乘数法目录 上页 下页 返回 结束 设拉格朗日函数如求二元函数下的极值,解方程组第二步 判别 比较驻点及边界点上函数值的大小 根据问题的实际意义确定最值第一步 找目标函数,确定定义域(及约束条件)3.函数的最值问题函数的最值问题在条件求驻点.目录 上页 下页 返回 结束 已知平面上两定点 A(1,3),B(4,2),试在椭圆圆周上求一点 C,使ABC 面积 S最大.解答提示解答提示:设 C 点坐标为(x,y),思考与练习思考与练习则 目录 上页 下页 返回 结束 设拉格朗日函数解方程组得驻点对应面积而比较可知,点 C 与 E 重合时,三角形面积最大.点击图中任意点动画开始或暂停目录 上页 下页 返回 结束 P117 3,5,9,10,13 习题课 作业作业目录 上页 下页 返回 结束 注 备用题备用题 1.求半径为R 的圆的内接三角形中面积最大者.解解:设内接三角形各边所对的圆心角为 x,y,z,它们所对应的三个三角形面积分别为设拉氏函数解方程组,得故圆内接正三角形面积最大,最大面积为 注则 目录 上页 下页 返回 结束 为边的面积最大的四边形,试列出其目标函数和约束条件?提示提示:目标函数目标函数:约束条件约束条件:答案答案:即四边形内接于圆时面积最大.2.求平面上以目录 上页 下页 返回 结束 3.设某电视机厂生产一台电视机的成本为c,每台电电视机的销售价格为p,销售量为x,假设该厂的生产处于平衡状态,即生产量等于销售量.根据市场预测,x 与p 满 足关系:其中M是最大市场需求量,a是价格系数.又据对生产环节的分析,预测每台电视机的生产成本满足:其中c0是生产一台电视机的成本,k是规模系数.问应如何确定每台电视机的售价 p,才能使该厂获得最大利润?解解:生产x台获得利润问题化为在条件,下求的最大值点.目录 上页 下页 返回 结束 作拉格朗日函数令将代入得由得将以上结果及,代入,得解得因问题本身最优价格必定存在,故此 p*即为所求.

    注意事项

    本文(高等数学第9章D98极值与最值.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开