欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023年湖南省常德市石门县高考冲刺数学模拟试题含解析.pdf

    • 资源ID:90884041       资源大小:2.51MB        全文页数:20页
    • 资源格式: PDF        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023年湖南省常德市石门县高考冲刺数学模拟试题含解析.pdf

    2023年高考数学模拟试卷考生须知:1,全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2,请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共1 2小题,每小题5 分,共 60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2+3/已知i 为虚数单位,则 了 节 =(A.7 4.+z5 57 4.B.-15 52.将函数c o s 3x+l 的图象向左平移g个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:654它的图象关于直线X=对称;它的最小正周期为年;1它的图象关于点(大,1)对称;1 O 它 在5号4,于1 94 上单调递增.其中所有正确结论的编号是()A.B.C.D.)D.口5 53.已知定义在R上的函数/*)的周期为4,当工-2,2)时,/(%)=-X4,贝!J/(l o g 36)+/(l o g 354)=32A.B.|-l o g321C.22,CD.-+l o g3 24.下列四个结论中正确的个数是(1)对于命题,:力 jC R使得x;-1K 0,则都有2一1 0;(2)已知 XN(2Q2),贝 J P(X 2)=0.5(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为夕=2 x-3;(4)“x2 1”是“x +工2 2”的充分不必要条件.XA.1 B.2 C.3 D.45.2020年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示1 月 2 1 日至3 月 7 日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下A.2 月下旬新增确诊人数呈波动下降趋势B.随着全国医疗救治力度逐渐加大,2 月下旬单日治愈人数超过确诊人数C.2 月 1 0日至2 月 1 4 日新增确诊人数波动最大D.我国新型冠状病毒肺炎累计确诊人数在2 月 1 2日左右达到峰值6.设双曲线0y21(a 0,b 0)的右焦点为F,右顶点为A,过 F 作 A F 的垂线与双曲线交于B,C两点,过 B,C分别作AC,A B 的垂线交于点D.若 D 到直线B C 的距离小于a +寿,则该双曲线的渐近线斜率的取值范围是()A.(-i,o)u(o,i)B.(-/2=2c o s-/2+72=2c o s-,2+52+及=2 c o s 2,请从中归纳出第个等式:4 8 1 6+42+=“不21 5.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,4 6%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之_ _ _ _ _ _ _.“我身边的榜样”评选选票候选人符号注:1 .同意回“。”,不同意回“X”.2.等张与墨“。”的个蒙不超12口才为有效票.甲乙丙1 6.为了 了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间 25,30)的一等品,在区间 20,25)和 30,35)的为二等品,其余均为三等品,则 样 本 中 三 等 品 的 件 数 为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1 7.(1 2 分)设函数/(x)=(a -x)e*+b x-c l n x.(1)若a =3,c =0时,/(x)在(0,+8)上单调递减,求。的取值范围;(2)若 a =2,b=4,c-4,求证:当 x l 时,f(x)1 6 81 n 2.18.(12 分)在 AABC中,A、B、C的对应边分别为。、b、C,已知。=2,c=2垂),cosC=-y.(1)求A;(2)设M为8 c中点,求A M的长.19.(12分)求下列函数的导数:小)=产 加(2)y(x)=(sin2x+l)220.(12分)选修4-4:坐标系与参数方程x=2 cos a在平面直角坐标系xO y中,已知曲线C的参数方程为 (a为参数).以直角坐标系原点O为极点,x轴的y=sina正半轴为极轴建立极坐标系,直线1的极坐标方程为夕cos(e-三)=2灰,点P为曲线C上的动点,求点P到直线14距离的最大值.21.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次NC尸普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案:将每个人的血分别化验,这时需要验1000次.方案:按A个人一组进行随机分组,把从每组A个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这女个人的血只需检验一次(这时认为每个人的血化验L次);否则,若呈阳性,则需对这人个人的血样再分别进行一次化验,这样,该组女个人的血总共需要k-化验左+1次.假设此次普查中每个人的血样化验呈阳性的概率为P,且这些人之间的试验反应相互独立.(1)设方案中,某组攵个人的每个人的血化验次数为X,求X的分布列;(2)设p=0.1,试比较方案中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)22.(10分)某企业现有4.8两套设备生产某种产品,现从4,B两套设备生产的大量产品中各抽取了 100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在 20,40)内的产品视为合格品,否则为不合格品.图1是从4设备抽取的样本频率分布直方图,表1是从8设备抽取的样本频数分布表.图1:A设备生产的样本频率分布直方图表 1:8 设备生产的样本频数分布表(1)请估计48 设备生产的产品质量指标的平均值;质量指标值 1 5,20)20,25)25,30)30,35)35,40)40,45)频数21 8481 41 62(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在 25,30)内的定为一等品,每件利润240元;质量指标值落在 20,25)或 30,35)内的定为二等品,每件利润1 80元;其它的合格品定为三等品,每件利润1 20元.根据图1、表 1 的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,5 两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?参考答案一、选择题:本题共1 2小题,每小题5 分,共 60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 .A【解析】根据复数乘除运算法则,即可求解.【详解】2+3i _ 2+3i _(2+3i)(2-i)_ 工十&(l-2z)z-2+i(2+z)(2-z)-5+5Z,故选:A.【点睛】本题考查复数代数运算,属于基础题题.2.B【解析】根据函数丁=45皿(3+夕)图象的平移变换公式求出函数8。)的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【详解】因为1Ax)=si 3x-Gcos 3x+l=2si(3x-g)+l,由 y=Asin(5+s)图象的平移变换公式知,函数g(x)=2s加3(x+?)g+l=25(3x+m)+l,其最小正周期为7=1,故正确;6 3 6 3令3 x+=k n+t,得 产 竺+工(A G Z),所以x=2 不是对称轴,故错误;6 2 3 9 9令 3*+丁=4兀,得 产 -二(&G Z),取 A=2,得 x=2,故函数g(x)的图象关于点(2,1)对称,故正确;6 3 1 8 1 8 1 8八力 兀 兀.但2卜兀 27 lk7i 7 i 注,.1 0万 1 37 一 .,q l 6%1 9乃令 2Am 3x+2kn-t,A G Z,得-x-1 取 A=2,得-x-,取&=3,得-xS,3-log31-4.,,31 l o g 16 i l o g-2=(-)5+(-)5 2+(log36-log3-)-83 3=6+-+log3(6x-)-8_ 3-2 1故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.4.C【解析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题:使 得 片-1 0,是错误的;(2)中,已知X N(2,CJ2),正态分布曲线的性质,可知其对称轴的方程为x=2,所 以P(X2)=0.5是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为y=2 x-3是正确;(4)中,当xN l时,可得+,22.工=2成立,当x 时,只需满足尤 0,所以“x l”是“龙+4 2 2”x V x x x成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.D【解析】根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据2月1()日至2月14日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论.【详解】对 于A选项,由图象可知,2月下旬新增确诊人数呈波动下降趋势,A选项正确;对 于B选项,由图象可知,随着全国医疗救治力度逐渐加大,2月下旬单日治愈人数超过确诊人数,B选项正确;对 于C选项,由图象可知,2月1()日至2月14日新增确诊人数波动最大,C选项正确;对 于D选项,在2月16日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在2月12日左右达到峰值,D选项错误.故选:D.【点睛】本题考查统计图表的应用,考查数据处理能力,属于基础题.6.A【解析】由题意如物 与a a根据双曲线的对称性知。在x轴上,设。(x,0),则由星3。)之皿得:工工T =c-x c-a ar(a-c)因为。到直线BC的距离小于Q+J T 寿,所以 a+必+讨a即0一b 1,所以双曲线渐近线斜率A=bG(1,0)U(0,1),故选A.a a7.C【解析】利用复数模与除法运算即可得到结果.【详 解】解.及一&(j).夜(一)一&g 1 +z 1+z (l +z)(l-z)2 2 2故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.8.D【解 析】由题意利用函数 =4$亩(妙+的 图 象 变 换 规 律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详 解】TT解:把 函 数/(x)=2s i n(3x +。)(0。万)图象向右平移g个单位长度后,8可 得y=2 s i n3-包+夕8的图象;TT再根据得到函数的图象关于直线X=对称,C 兀 3).71,r3 x-卜(p =k,7i H 9 攵 w Z,3 8 271 7t函 数/(x)=2s i n 3x +7 4、T j在8 8.c 7万上,3x +-Go71 5万7T,/.s i n 3 x-eI 8 J鸟故/(x)=2 s i n 3x-引 e -72,2,即/(x)的 值 域是-72,2,故选:D.【点睛】本题主要 考 查 函 数y =As i n(5 +e)的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.9.B【解 析】由平均数、方差公式和极差、中位数概念,可得所求结论.【详 解】-7 9 +8 8 +8 2 +8 2 +9 3 +9 1。对 于 甲,药=-;-8 5.8 ;6E=72+74+81+89+96+99、8 5.2,一6故A正 确:甲的极差为9 3 -7 9 =1 4,乙的极差为9 9 -7 2 =2 7,故3错误;对 于 甲,方 差S;z 2 6.5,对于乙,方 差 用 引0 6.5,故C正确;甲 得 分 的 中 位 数 为 号 遗=8 5,乙得分的中位数为 以等=8 5,故。正确.故选:B.【点 睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题.10.B【解 析】因为将函 数/(x)=s i n(3+。)(0 /6,一四。弓)的图象向右平移g个单位长度后得到函数g(x)的图象,可 得g(x)=s i n y x-?+。=s m c o x-a)+(p,结合已知,即可求得答案.【详 解】.将函数/(x)=s i n(o x+e)(0。6,彳 )的图象向右平移彳个单位长度后得到函数g(x)的图象g(x)=s i n.(71)T T又 13和g 的图象都关于 对称.由71,71彳口+夕=仁乃+,71 71.71k27r-(4,6 GZ),得(啰=(仁 _k 2),(K,&eZ),即 6 9 =3(仁 一 女2)(人,4 2 WZ),又:0 y 0)恒过定点。(一1,(),由 此 推 导 出=由此能求出点5的坐标,从而能求出的值.【详解】设抛物线C:V=4 x的准线为/:x=1,直线y=/c(x+1)(攵0)恒过定点P(-1,0),如图过A、8分别作AMJ_/于M,B N 上1 于 N,由|AM|=2忸N ,贝!|E4|=2|FB|,点3为A尸的中点、连 接0 3,则|。用=;同 可,:.OB=BF,点8的横坐标为;,.点8的坐标为,把 吗 代 入 直线-1)(%0),解得T【点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.12.C【解析】充分利用正方体的几何特征,利用线面平行的判定定理,根 据 反 A C判断A的 正 误.根 据/4 G,4 G /I A C、判断B的正误.根据叫/G,G 与 相 交,判 断C的正误.根据4 8/RC,判断D的正误.【详解】在正方体中,因为E F A C ,所以E F /平面A C。,故A正确.因为6 7/4 q,4 G /A 4 C,所以G/7/AC,所以G”/平面A C。故B正确.因为4 8/D C,所以4 8/平面A C R,故D正确.因为EH /CD,C、D与0c相交,所 以E u与平面A C 2相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.二、填空题:本题共4小题,每小题5分,共2 0分。1 3.3 2万【解析】设 的 中 心 为7,A 5的中点为N,A C中点为M,分别过M,7做平面A 5 C,平面的垂线,则垂线的交点为球心O,将 的 长 度 求 出 或 用 球 半 径 表 示,再利用余弦定理即可建立方程解得半径.【详解】设A E 4 3的中心为T,A 8的中点为N,A C中点为M,分别过M,T做平面A 8 C,平面4 1 8的垂线,则垂线的交点为球心0,如图所示因为 PA=P 8=AB =2 0,B C =H 所以 77V =1,N M =,A C =V 1 4 2又二面角 P-AB-C 的大小为 1 3 5,则 N 77V M=1 3 5,Z,TOM=4 5.所以T M2=T N2+M N2-2 M N-T N-c o s Z T N M =-,2,7设外接球半径为R,则OM2=R2-,0 72 =相 一4,在 AO T T W 中,由余弦定理,得 770 2 =T(+M O 2 -2 M o T O c o s N T O M,即 g =R 2 _ 4 +火2 _ g _ J(2 R 2 _ 7)(R 2 _ 4),解得 R 2=8,故三棱锥P-A B C外接球的表面积S =4兀R 2=3 2万.故答案为:32n.【点睛】本题考查三棱锥外接球的表面积问题,解决此类问题一定要数形结合,建立关于球的半径的方程,本题计算量较大,是一道难题.c 兀1 4.2 C O S r2n+1【解析】通过已知的三个等式,找出规律,归纳出第个等式即可.【详解】解:因为:xf2=2c o s ,+/2 =2 c o s ,2 +J 2 +及=2 c o s二,4 8 161 4等式的右边系数是2,且角是等比数列,公比为5,则角满足:第个等式中的角吩1,所以2+2+=2 c o s券;,不21 T故答案为:2 c o s-p.2【点睛】本题主要考查归纳推理,注意已知表达式的特征是解题的关键,属于中档题.1 5.91【解析】设共有选票1 0 0张,且1,2,3票对应张数为乂y衣,由此可构造不等式组化简得到z =x +9,由投票有效率越高二越小,可知Z m M=9,由此计算可得投票有效率.【详解】不妨设共有选票10()张,投1票的有X,2票的有y,3票的有z,则由题意可得:x+2y+3z=88+75+46=209-x+y+z=100,化简得:z x 9 即 z=x+9,x,y,ze N投票有效率越高,z越小,则x=0,z=9,100-9故 本 次 投 票 的 有 效 率(有 效 票 数 与 总 票 数 的 比 值)最 高 可 能 为100%=91%.故答案为:91%.【点睛】本题考查线性规划的实际应用问题,关键是能够根据已知条件构造出变量所满足的关系式.16.100.【解析】分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数.详解:由题意得,三等品的长度在区间 10/5),15,20)和 35,40内,根据频率分布直方图可得三等品的频率为()0125+0.0250+0.0125)x5=0.25,.样本中三等品的件数为4(X)x0.25=KX).频率点睛:频率分布直方图的纵坐标为黑,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的组距高视为频率时常犯的错误.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(-00,-e (2)见解析【解析】(1)幻在(),e)上单调递减等价于r(x)W0在(),也)恒成立,分离参数即可解决.(2)先对/(X)求导,化简后根据零点存在性定理判断唯一零点所在区间,构造函数利用基本不等式求解即可.【详解】(1)a=3,c=0 时,f(x)=(3-x)ex+bx,(x)=-ex+(3-x)ex+/?=(2 x)ex+b,/(x)在(0,+8)上单调递减.(2 x)e +/?W 0 ,b 4(x 2)e .令 g(x)=(x-2)e*,g (x)=ex+(x-2)ex=(x-l)ex,0 x l 时,g(x)l 时,g (x)0,.g(x)在(0,1)上为减函数,在(1,+c。)上为增函数.g(x)mi n=g =-e ,/./?e.的取值范围为(一双-e.(2)若a=2,b-4,c=4时,f(x)=(2-x)ev+4 x-4 1 nx,f(x)=e*+(2-x)ex+4 一 =(1 一 x)卜,4令(x)=-,显然(x)在(1,田)上为增函数.x又(l)=e-4 0,.加)有唯一零点飞.且 e (1,2),1 c x /时,h(x)0 ;xx0 时,h(x)0,f(x)0,二/(x)在(Lx。)上为增函数,在(%0,+8)上为减函数.=%)=(2 -/)*+4与-4 1 nx0.4 4又(%)=*-=0,/*=4,X o +l nx0=l n4.玉)*08:./(X。)=2 e。_ 4 +4%Q _ 4 1 nx0 =-4 +4 x 4 (In 4 _)xo(1 )=8 +%-4-4 1 n4.8(g +2)4 4 1 n4 =1 6 81 n2,(l x0 l时,/(x)/2+4 /n i c i x 2【解析】试题分析:利用Q C OS夕=X,。si n夕=y将极坐标方程化为直角坐标方程:夕c o s(6-巳)=2血 化简为pc o s0+psi nO4=1,即为x+y=l.再利用点到直线距离公式得:设点P的坐标为(2 c o sa,si na),得P到直线I的距离1 2 c o sa +si na 4|r-d=J-产-2 V 2 +及试题解析:解:2C OS(。-工)=2&化简为pc o sO+psi ne=l,4则直线1的直角坐标方程为x+y=l.设点P的坐标为(2 c o sa,si na),得P到直线1的距离d=12cos+二a -4|支邑叵,V 2 2d _ 7万历U ma x L7,+-2考点:极坐标方程化为直角坐标方程,点到直线距离公式2 1.(1)分布列见解析;(2)4 0 6.【解析】(1)计算攵个人的血混合后呈阴性反应的概率为炉,呈阳性反应的概率为1-/,得到分布列.(2)计算E(X)=-夕出+1,代入数据计算比较大小得到答案.K【详解】(1)设每个人的血呈阴性反应的概率为心 则4=1 -P.所以上个人的血混合后呈阴性反应的概率为qk,呈阳性反应的概率为1 -qk.依题意可知X=:,1+!,所以X的分布列为:k k(2)方案中.X1 ki+-kPqkI T结 合(1)知每个人的平均化验次数为:=+=;K、K,J K1 ,攵=2时,E(X)=0.92+1=0.6 9,此 时1000人需要化验的总次数为690次,2左=3时,E(X)=;0.9 3+1 x0.6 0 4 3,此 时1000人需要化验的总次数为604次,左=4时,E(X)=0.94+1=0.5 9 3 9,此 时1000人需要化验的次数总为594次,4即攵=2时化验次数最多,左=3时次数居中,攵=4时化验次数最少,而采用方案则需化验1000次,故在这三种分组情况下,相比方案,当k=4时化验次数最多可以平均减少1(XX)-5 9 4 =406次.【点睛】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力.22.(1)xA=3 0.2,扁=29;(2)8 设备【解析】(1)平均数的估计值为组中值与频率乘积的和;(2)要注意指标值落在 20,40)内的产品才视为合格品,列出4、8设备利润分布列,算出期望即可作出决策.【详解】(D 4设备生产的样本的频数分布表如下=0.0 4 x 1 7.5+0.1 6 x 2 2.5+0.4 0 x 2 7.5+0.1 2 x 3 2.5+0.1 8 x 3 7.5+0.1 0 x 4 2.5 =3 0.2.质量指标值1 5,2 0)2 0,2 5)2 5,3 0)3 0,3 5)3 5,4 0)4 0,4 5)频数41640121810根据样本质量指标平均值估计4设备生产一件产品质量指标平均值为30.2.B设备生产的样本的频数分布表如下质量指标值XB1 5,2 0)2 0,2 5)2 5,3 0)3 0,3 5)3 5,4 0)4 0,4 5)频数2184814162xB=1 7.5 X 0.0 2 +2 2.5 x 0.1 8 +2 7.5 x 0.4 8 +3 2.5 x 0.1 4 +3 7.5 x 0.1 6 +4 2.5 x 0.0 2 =2 9(2)A设备生产一件产品的利润记为X,B设备生产一件产品的利润记为Y,根据样本质量指标平均值估计B设备生产一件产品质量指标平均值为29.X240180120P2 04 31 44 394 3Y240180120P2J _3_6E(X)=(2 4 0 x 2 0 +1 8 0 x 1 4 +1 2 0 x 9)=1 9 5.3 5(7)=2 4 0 x 1 +1 8 0 x 1 +1 2 0 x 1 =2 0 02 3 6E(X)E)若以生产一件产品的利润作为决策依据,企业应加大B设备的生产规模.【点睛】本题考查平均数的估计值、离散随机变量的期望,并利用期望作决策,是一个概率与统计综合题,本题是一道中档题.

    注意事项

    本文(2023年湖南省常德市石门县高考冲刺数学模拟试题含解析.pdf)为本站会员(无***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开