欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    材料成型基本原理课后答案(一).pdf

    • 资源ID:90925529       资源大小:14.76MB        全文页数:90页
    • 资源格式: PDF        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    材料成型基本原理课后答案(一).pdf

    第一章习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明相同点不同点液具 有 自 由 表面;可压缩性很低具有流动性,不能承受切应力;远程无序,近程有序固不具有流动性,可承受切应力;远程有序液完全占据容器空间并取得容器内腔 形 状;具有流动性远程无序,近程有序;有自由表面;可压缩性很低气完全无序;无自由表面;具有很高的压缩性(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:物质熔化时体积变化、燃变及焙变一般都不大。金属熔化时典型的体积变化A V/V为3%5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。金属熔化潜热A H.约为气化潜热A R,的1/15 1/3 0,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。2 .如何理解偶分布函数g(r)的物理意义?液体的配位数弗、平均原子间距n各表示什么?答:分布函数g(r)的物理意义:距某一参考粒子r处找到另一个粒子的儿率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度P (r)对于平均数密度P。(=N/V)的相对偏差。N1表示参考原子周围最近邻(即第一壳层)原子数。r,表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。3 .如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=l。晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。而 液 体 的g(r)出现若干渐衰的钝化峰直至儿个原子间距后趋于直线g(r)=l,表明液体存在短程有序的局域范围,其半径只有儿个原子间距大小。从金属熔化过程看物质熔化时体积变化、煽变及焰变一般都不大。金属熔化时典型的体积变化A V/V为3%5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。另一方面,金属熔化潜热八乩约为气化潜热AL 的1/1 5 1/3 0,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。R i c h t e r等人利用X衍射、中子及电子衍射手段,对碱金属、A u、A g、P b和T 1等熔体进行了十多年的系统研究,认为液体中存在着拓 扑 球 状 密 排 结 构 以 及 层 状 结 构,它们的尺寸范围约为1 0-1 0 7c m0 R e i c h e r t观察到液态P b局域结构的五重对称性及二十面体的存在,并推测二十面体存在于所有的单组元简单液体。在 L i-P b、C s-A u、M g-B i、M g-Z n、M g-S n.C uT i、C u-S n、A-M g、A l-F e等固态具有金属间化合物的二元熔体中均被发现有化学短程序的存在。4.如何理解实际液态金属结构及其三种“起伏”特征?答:理想纯金属是不存在的,即使非常纯的实际金属中总存在着大量杂质原子。实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。能量起伏是指液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。结构起伏是指液态金属中大量不停“游动”着的原子团簇不断地分化组合,由 于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变的现象。浓度起伏是指在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象。5 .根据图1 T 0 及 式(1-7)说明为动力学粘度n的物理意义,并讨 论 液 体 粘 度 n (内摩擦阻力)与液体的原子间结合力之间的关系。答:物理意义:作用于液体表面的应力T大小与垂直于该平面方向上的速度梯度d V x/d y 的比例系数。通常液体的粘度表达式为=ce x p(u/k“)。这里却为 B o l z m a n n 常数,U为无外力作用时原子之间的结合能(或原子扩散势垒),C为常数,T为热力学温度。根据此式,液体的粘度n随结合能U按指数关系增加,这可以理解为,液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高。6 .总结温度、原 子 间 距(或体积)、合金元素或微量元素对液体粘度 n高低的影响。答:n与 温 度 T的关系受两方面(正比的线性及负的指数关系)所共同制约,但总的趋势随温度T而下降。粘度随原子间距6 增大而降低,与苏成反比。合金组元或微量元素对合金液粘度的影响比较复杂。许多研究者曾尝试描述二元合金液的粘度规律,其中M-H(M o e l w y n-Hu gh e s)模型为:=(X+X2%)1-2 7 A/(1-9)式 中 5、L、X i、X 2分别为纯溶剂和溶质的粘度及各自在溶液中的m o l e分数,R为气体常数,中为两组元的混合热。按M-H模型,如果混合热中为负值,合金元素的增加会使合金液的粘度上升。根据热力学原理,为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高。M-H模型得到了一些实验结果的验证。当溶质与溶剂在固态形成金属间化合物,由于合金液中存在异类原子间较强的化学结合键,合金液的粘度将会明显高于纯溶剂金属液的粘度。当合金液中存在表面及界面活性微量元素(如Al-S i合金变质元素Na)时,由于冷却过程中微量元素抑制原子集团的聚集长大,将阻碍金属液粘度的上升。通常,表面活性元素使液体粘度降低,非表面活性杂质的存在使粘度提高。7.过 共 析 钢 液H=0.0 0 49Pa .S,钢液的密度为7 0 0 0 k g/m3,表面张力 为1 50 0 m N/m,加铝脱氧,生成密度为540 0 k g/n?的AU)3,如能 使Ah。,颗粒上浮到钢液表面就能获得质量较好的钢。假如脱氧产物在1 52 4m m深处生成,试确定钢液脱氧后2 m i n上浮到钢液表面的Ah。:最小颗粒的尺寸。,_2 gpm-pBr2答:根据流体力学的斯托克斯公式:9 7 ,式中:。为夹杂物和气泡的上浮速度,r为气泡或夹杂的半径,Pm 为液体合金密度,PB为夹杂或气泡密度,g 为重力加速度。r=l-VT1-=1.34 x 1 O-4V2 g(PPB)m分析物质表面张力产生的原因以及与物质原子间结合力的关系。答:表面张力是由于物体在表面上的质点受力不均所造成。由于液体或固体的表面原子受内部的作用力较大,而朝着气体的方向受力较小,这种受力不均引起表面原子的势能比内部原子的势能高。因此,物体倾向于减小其表面积而产生表面张力。原子间结合力越大,表面内能越大,表面张力也就越大。但表面张力的影响因素不仅仅只是原子间结合力,与上述论点相反的例子大量存在。研究发现有些熔点高的物质,其表面张力却比熔点低的物质低,如 蛇 与 Z n 同样都是二价金属,M g 的熔点为6 5 0 C,Z n的熔点为4 2 0 C,但 M g 的表面张力为5 5 9 m N/m;Z n 的表面张力却 为 7 8 2 m N/m。此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。这说明单靠原子间的结合力是不能解释一切问题的。对于金属来说,还应当从它具有自由电子这一特性去考虑。9.表面张力与界面张力有何异同点?界面张力与界面两侧(两相)质点间结合力的大小有何关系?答:界面张力与界面自由能的关系相当于表面张力与表面自由能的关系,即界面张力与界面自由能的大小和单位也都相同。表面与界面的差别在于后者泛指两相之间的交界面,而前者特指液体或固体与气体之间的交界面,但更严格说,应该是指液体或固体与其蒸汽的界面。广义上说,物 体(液体或固体)与气相之间的界面能和界面张力为物体的表面能和表面张力。当两个相共同组成一个界面时,其界面张力的大小与界面两侧(两相)质点间结合力的大小成反比,两相质点间结合力越大,界面能越小,界面张力就越小;两相间结合力小,界面张力就大。相反,同一金属(或合金)液固之间,由于两者容易结合,界面张力就小。1 0.液态金属的表面张力有哪些影响因素?试总结它们的规律。答:液态金属的表面张力的影响因素有:(1)原子间结合力原子间结合力越大,表面内能越大,表面张力也就越大。但表面张力的影响因素不仅仅只是原子间结合力,研究发现有些熔点高的物质,其表面张力却比熔点低的物质低。此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。这说明单靠原子间的结合力是不能解释一切问题的。对于金属来说,还应当从它具有自由电子这一特性去考虑。(2)温度液态金属表面张力通常随温度升高而下降,因为原子间距随温度升高而增大。(3)合金元素或微量杂质元素合金元素或微量杂质元素对表面张力的影响,主要取决于原子间结合力的改变。向系统中加入削弱原子间结合力的组元,会使表面张力减小,使表面内能降低,这样,将会使表面张力降低。合金元素对表面张力的影响还体现在溶质与溶剂原子体积之差。当溶质的原子体积大于溶剂原子体积,由于造成原子排布的畸变而使势能增加,所以倾向于被排挤到表面,以降低整个系统的能量。这些富集在表面层的元素,由于其本身的原子体积大,表面张力低,从而使整个系统的表面张力降低。原子体积很小的元素,如0、S、N等,在金属中容易进入到熔剂的间隙使势能增加,从而被排挤到金属表面,成为富集在表面的表面活性物质。由于这些元素的金属性很弱,自由电子很少,因此表面张力小,同样使金属的表面张力降低。(4)溶质元素的自由电子数目大凡自由电子数目多的溶质元素,由于其表面双电层的电荷密度大,从而造成对金属表面压力大,而使整个系统的表面张力增加。化合物表面张力之所以较低,就是由于其自由电子较少的缘故。1 1.设凝固后期枝晶间液体相互隔绝,液膜两侧晶粒的拉应力为1.5x 1 03M p a,液膜厚度为1.I X 1 0 3 m,根据液膜理论计算产生热裂的液态金属临界表面张力。答:f T/2=0.8 2 5 N/m12.试述液态金属充型能力与流动性间的联系和区别,并分析合金成分及结晶潜热对充型能力的影响规律。答:(1)液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力,简称为液态金属充型能力。液态金属本身的流动能力称为“流动性”,是液态金属的工艺性能之一。液态金属的充型能力首先取决于金属本身的流动能力,同时又受外界条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。在工程应用及研究中,通常,在相同的条件下(如相同的铸型性质、浇注系统,以及浇注时控制合金液相同过热度,等等)浇注各种合金的流动性试样,以试样的长度表示该合金的流动性,并以所测得的合金流动性表示合金的充型能力。因此可以认为:合金的流动性是在确定条件下的充型能力。对于同一种合金,也可以用流动性试样研究各铸造工艺因素对其充型能力的影响。(2)合金的化学成分决定了结晶温度范围,与流动性之间存在一定的规律。一般而言,在流动性曲线上,对应着纯金属、共晶成分和金属间化合物之处流动性最好,流动性随着结晶温度范围的增大而下降,在结晶温度范围最大处流动性最差,也就是说充型能力随着结晶温度范围的增大而越来越差。因为对于纯金属、共晶和金属间化合物成分的合金,在固定的凝固温度下,已凝固的固相层由表面逐步向内部推进,固相层内表面比较光滑,对液体的流动阻力小,合金液流动时间长,所以流动性好,充型能力强。而具有宽结晶温度范围的合金在型腔中流动时,断面上存在着发达的树枝晶与未凝固的液体相混杂的两相区,金属液流动性不好,充型能力差。对于纯金属、共晶和金属间化合物成分的合金,在一般的浇注条件下,放出的潜热越多,凝固过程进行的越慢,流动性越好,充型能力越强;而对于宽结晶温度范围的合金,由于潜热放出15 20%以后,晶粒就连成网络而停止流动,潜热对充型能力影响不大。但也有例外的情况,由于S i晶体结晶潜热为a-Al的4倍以上,Al-Si合金由于潜热的影响,最好流动性并不在共晶成分处。1 3.某飞机制造厂的一牌号Al-Mg合 金(成分确定)机翼因铸造常出 现“浇不足”缺陷而报废,如果你是该厂工程师,请问可采取哪些工艺措施来提高成品率?答:机翼铸造常出现“浇不足”缺陷可能是由金属液的充型能力不足造成的,可采取以下工艺提高成品率:(1)使用小蓄热系数的铸型来提高金属液的充型能力;采用预热铸型,减小金属与铸型的温差,提高金属液充型能力。(2)提高浇注温度,加大充型压头,可以提高金属液的充型能力。(3)改善浇注系统,提高金属液的充型能力。第二章习题解答1.已知某半无限大板状铸钢件的热物性参数为:导热系数入=4 6.5W/(m-K),比热容 C=4 6 0.5 J/(k g K),密度 P=7 8 5 0 k g/m3,取浇铸温度为1 5 7 0 C,铸型的初始温度为2 0。用描点作图法绘出该铸件在砂型和金属型铸模(铸型壁均足够厚)中浇铸后0.0 2 h、0.2 h 时刻的温度分布状况并作分析比较。铸型的有关热物性参数见表2-2 o解:(1)砂型:4 =口2 9 6 5%=2 Q0 2 =6 3 9T _ 瓦 丁io+b2T20界面温度:一 比+”=1 4 9 7 铸件的热扩散率:/=1.3 x l 0 5 m7 sT=4 +(乙 0 _ Ti)e rf I ,r-根据公式 I?而 J 分别计算出两种时刻铸件中的温度分布状况见表1。表 1 铸件在砂型中凝固时的温度分布与铸型表面距离(m)00.0 20.0 40.0 60.0 80.1 0温度t=0.0 2 h1 4 9 71 5 2 31 5 4 51 5 5 91 5 6 61 5 6 9()时t=0.2 0 h时1 4 9 71 5 0 51 5 1 31 5 2 11 5 2 81 5 3 5根据表1结果做出相应温度分布曲线见图l o(2)金属型:4=而6=1 2 9 6 5%=山2P2=1 5 4 3 4T _ 47|()+bJ X)界面温度:一 4+%=7 2 7.6 同理可分别计算出两种时刻铸件中的温度分布状况见表2与图20表2铸件在金属型中凝固时的温度分布0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1与铸型表面距离(m)00.0 20.0 40.0 60.0 80.1 0温度(t=0.0 2 h时7 2 7.6 1 0 3 01 2 7 71 4 3 81 5 2 01 5 5 5t=0.2 0 h时7 2 7.6 8 2 39 1 51 0 0 51 0 8 01 1 5 9T/*C1600 1140012001000800600400t=0.02h T/,C加 二 *t 1600t=O.Oh140012001000800(600400-1-1-1-1-*200t=0.02h/t=0.2h距离/m距离/m图1铸件在砂型中凝固时的温度分布曲线 图2铸件在金属型中凝固时的温度分布曲线(3)分析:采用砂型时,铸件金属的冷却速度慢,温度梯度分布平坦,与铸型界面处的温度高,而采用金属铸型时相反。原因在于砂型的蓄热系数b比金属铸型小得多。2.采 用(2 7 7)、(2-1 8)两式计算凝固过程中的温度分布与实际温度分布状况是否存在误差?分析误差产生的原因,说明什么情况下误差相对较小?解:是有误差的。因为在推导公式时做了多处假设与近似处理,如:没有考虑结晶潜热。若结晶潜热小,则误差就小;假设铸件的热物理参数4、G、8与铸型的热物理参数4、,2、A不随温度变化。若它们受温度影响小,则误差就小;没有考虑界面热阻。若界面热阻不大,则误差就小;假设铸件单向散热,因此只能用于半无限大平板铸件温度场得估算,对于形状差异大的铸件不适用。3.凝固速度对铸件凝固组织、性能与凝固缺陷的产生有重要影响。试分析可以通过哪些工艺措施来改变或控制凝固速度?解:改变铸件的浇注温度、浇铸方式与浇铸速度;选用适当的铸型材料和起始(预热)温度;在铸型中适当布置冷铁、冒口与浇口;在铸型型腔内表面涂敷适当厚度与性能的涂料。4 .比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。解:一般在体积相同的情况下上述物体的表面积大小依次为:A球A块A板A杆根据 4=7与一了所以凝固时间依次为:t球 乂 块 t板 乂 杆。5 .在砂型中浇铸尺寸为3 0 0 x 3 0 0 x 2 0 mm的纯铝板。设铸型的初始温度 为2 0 ,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点6 6 0 ,且在铸件凝固期间保持不变。浇铸温度为6 7 0 ,金属与铸型材料的热物性参数见下表:试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出导热系数比热容C密 度P热扩散率结晶潜性入J/(k g K k g/m3a执/、m2/s材料W/(m K)J/k g纯铝2 1 21 2 0 02 7 0 06.5 x 1 0-5 3.9 x 1 0 5砂型0.7 3 91 8 4 01 6 0 02.5 x 1 0-76 T曲线;(2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。解:(1)代入相关已知数解得:%=用 应,=1 4 7 5 ,2名(1-7 2 0)屈。+,G i o -T$)=o.9 433(i 1 1m z 4)6=宜根据公式 K计算出不同时刻铸件凝固层厚度S见下表,4一,曲线见 图3oT(S)02040608 0100120(mm)04.2(N6.0C7.38.4L9.4(I10.cJ图 3 J 7 关系曲线(2)利 用“平方根定律”计算出铸件的完全凝固时间:取 =1 0 mm,代入公式解得:T=112.4(s);利 用“折算厚度法则”计算铸件的完全凝固时间:R匕 丫A =8.8 24(m m)IP=8 7.5(s)采 用“平方根定律”计算出的铸件凝固时间比“折算厚度法则”的计算结果要长,这是因为“平方根定律”的推导过程没有考虑铸件沿四周板厚方向的散热。6.右图为一灰铸铁底座铸件的断面形状,其厚度为30m m,利 用“模数法”分析砂型铸造时底座的最后凝固部位,并估计凝固终了时间.解:将底座分割成A、B、C、D四类规则儿何 体(见右下图)J ,:八!120IHn 60查表 2-3 得:K=0.7 2(c m/V r)对 A 有:RA=VA/AA=1.23c mTA=RA2/KA2=2.9 m i n对 B 有:RB=VB/AB=1.33c mTB=RB2/KB2=3.4m i n对 C 有:Rc=Vc/Ac=l.2c mTC=RC2/Kc2=2.57 m i n对 D 有:RD=VD/AD=1.26c mTD=RD2/KD2=3.06m i n因此最后凝固部位为底座中肋B处,-160 Ss即 液 相 自 由 能GL随 温 度 上 升 而 下 降 的斜率大于固相G s的斜 率。过冷度 八 丁 是影响凝固相变驱动力AG的决定因素的理由如下:右图即为图3-1其中:G y表示液一固体积自由能之差L表示液-固平衡凝固点从图中可以看出:T T 时,A G=G s-GL 0,此时 固相f液相T =Tr a时,AG=GS-GL=0,此时 液固平衡TV时,AG=GS-GL 0,此时 液相f固相所 以 AG即为相变驱动力。AGV再结合(3-6)式来看,Tm(其中:乩一熔化潜热,AT(=北一7)一过冷度)由于对某一特定金属或合金而言,T m 及 A H”均为定值,所以过冷度A T 是影响凝固相变驱动力AG的决定因素。怎样理解溶质平衡分配系数K。的物理意义及热力学意义?答:(1)K。的物理意义如下:溶质平衡分配系数K。定义为:特定温度T*下固相合金成分浓度C 5与液相合金成分浓度C:达到平衡时的比值:JK o =c KO1时,固相线、液相线构成的张角朝上,K。越大,固相线、液相线张开程度越大,开始结晶时与终了结晶时的固相成分差别越大,最终凝固组织的成分偏析越严重。(2)K。的热力学意义如下:根据相平衡热力学条件,平衡时溶质在固相及液相中化学位相等3(7)=(7)经推导L sK。与 e x p l迎2稀溶液时,力 于 是 有:孰 rt由(1)及(2)式可知溶质平衡分配系数主要取决于溶质在液、固两相中的标准化,表 面 自 由 能学位,对于实际合金,还受溶质在液、固两相中的活度系数/影响。平衡时溶 o质 在 固 相 和 液 相 中 化 学 位 相 等,即 、一、L/T S/T、体 积 自 由 能/*M e i,)o当平衡被打破时,、欲达到新平衡,只有通,过溶质扩散改变液固两相溶质组元活度,从而建立新的平衡,使O3.结合图3-3及 图34解释临界晶核半径r*和形核功A G*的意义,以及为什么形核要有一定过冷度。答:(1)临界晶核半径r*的意义如下:r r*时,不稳定的晶胚转化为稳定晶核,开始大量形核。故r*表示原先不稳定的晶胚转变为稳定晶核的临界尺寸。临界形核功A G*的意义如下:表示形核过程系统需克服的能量障碍,即 形 核“能 垒”。只有当A G 2 A G*时,液相才开始形核。图3-4液态金属r。、r*与T的关系及临界过冷度A T *(2)形核必须要有一定过冷度的原因如下:由形核功的公式:AG*3(均质形核)(Tm-Vs)2 3cosB+cos 0AGZ=3“J 4(非均质形核)对 某 种 晶 体 而言,Vs、网上、T,”均为定值,A G*8A T-2,过 冷 度AT越小,形 核 功A G*越大,A T f O时,A G*-8,这表明过冷度很小时难以形核,所以物质凝固形核必须要有一定过冷度。4.比 较 式(3-1 4)与 式(3-1 8)、式(3-1 5)与 式(3-1 9),说明为什么异质形核比均质形核容易,以及影响异质形核的基本因素和其它条件。答:(3-1 4)2%,%=2GsiyKmr he*=A G y -NH,EAG,J=等 端(3 N)_ Tm-Vs Y 2-3cos+cos30Gj=31A3AH J T*=_2/M =2”匕A G y -AH(3-1 8)(3-1 5)(3-1 9)(1)异质形核比均质形核容易的原因如F:首先,从(3-1 4)式和(3-1 8)式可以看出:非均质形核时的球缺的临界曲率半径与均质形核时的相同,但新生固相的球缺实际体积却比均质形核时的晶核体积小得多,所以,从本质上说,液体中晶胚附在适当的基底界面上形核,体积比均质临界晶核体积小得多时便可达到临界晶核半径。再 从(3-1 5)式和(3-1 9)式可以看出:?,=(2-3cos0+cos3。)AG,*AG 42-3 cos。+cos3 0令 4 ,其数值在o-l 之间变化则A G;”=/皿显然接触角。大小(晶体与杂质基底相互润湿程度)影响非均质形核的难易程度。由于通常情况下,接触角。远小 于 1 8 0,所以,非均质形核功A G;,。远小于均质形核功A G;”,非均质形核过冷度A T*比均质形核的要小得多。综合上述几方面原因,所以异质形核比均质形核容易得多。影响异质形核的基本因素如下:首先,非均质形核必须满足在液相中分布有一些杂质颗粒或铸型表面来提供形核基底。其次,接触角。*1 8 0。,因为当。=1 8 0。时,G=A G h。*,此时非均质形核不起作用。影响异质形核的其它条件:a.基底晶体与结晶相的晶格错配度的影响。6 =丝二也 x 1 0 0%ON(由一结晶相点阵间隔,a,:一杂质点阵间隔)错 配 度 6越小,共格情况越好,界 面 张 力。院 越小,越容易进行非均质形核。b.过冷度的影响。过冷度越大,能促使非均匀形核的外来质点的种类和数量越多,非均匀形核能力越强。讨论两类固-液界面结构(粗糙面和光滑面)形成的本质及其判据。答:(1)a.固-液界面结构主要取决于晶体生长时的热力学条件及晶面取向。设晶体内部原子配位数为v,界 面 上(某一晶 面)的 配 位 数 为n,晶体表面上有N个原子位置只有N,个固相原子(N),则在熔 点T J寸,单个原子由液相向固-液界面的固相上沉积的相对自1 -x)+X In X+(1-x)ln(l-X)由能变化为:NW,kTm I J=-x)+xlnx+(l-x)ln(l-x)(1)kTm W(2)k为玻尔滋曼常数,由,/乙,=尺 为单个原子的熔融嫡,a被称为J a c k son 因子。通过分析比较不同。值时相对自由能与界面原子占据率可以看出:a 2时,A F s在x=0.5 (晶体表面有一半空缺位置)时有一个极小值,即自由能最低;2a5时,A F s在接近X=0或X=1处有两个极小值。此时,晶体表面位置儿乎全被占满或仅有极少数位置被占据。a非常大时,A F s的两个最小值出现在X f。,Xf 1的 地 方(晶体表面位置已被占满)。若 将a=2,丫=0.5同 时 代 入(2)式,单 个 原 子 的 熔 融 熠 为:A/?,7 1-=akl=2k x =4k%=*v 0-5 ,对于一摩尔,熔 融 嫡A Sf=4k NA=4R(其中:N,为阿伏加德罗常数,R为气体常数)。由(2)式可知,熔 融 燧A S,上升,贝 增大,所 以S W d R时,界面以粗糙面为最稳定,此时晶体表面容易接纳液相中的原子而生长。熔融嫡越小,越容易成为粗糙界面。因此,液-固微观界面结构究竟是粗糙面还是光滑面主要取决于物质的热力学性质。另一方面,对于热力学性质一定的同种物质,n/v值取决于界面是哪个晶面族。对于密排晶面,n/v值是高的,对于非密排晶面,n/v值是低的,根 据 式(2),n/v值越低,a值越小。这说明非密排晶面作为晶体表面(固-液界面)时,微观界面结构容易成为粗糙界面。b.晶体生长界面结构还会受到动力学因素的影响,如凝固过冷度及结晶物质在液体中的浓度等。过冷度大时,生长速度快,界面的原子层数较多,容易形成粗糙面结构,而过冷度小时界面的原子层数较少,粗糙度减小,容易形成光滑界面。浓度小的物质结晶时,界面生长易按台阶的侧面扩展方式进行(固-液界面原子层厚度小),从 而 即 使 时,其固-液界面也可能有光滑界面结构特征。(2)可用J a c k s o n因子。作为两类固-液界面结构的判据:aW2时,晶体表面有一半空缺位置时自由能最低,此时的固-液界面(晶体表面)为粗糙界面;a 5时,此时的固-液界面(晶体表面)为光滑界面;a=2 5时,此时的固-液界面(晶体表面)常为多种方式的混合,B i、Si、Sb等属于此类。固-液界面结构如何影响晶体生长方式和生长速度?同为光滑固-液界面,螺旋位错生长机制与二维晶核生长机制的生长速度对过冷度的关系有何不同?答:(1)固-液界面结构通过以下机理影响晶体生长方式:粗糙面的界面结构,有许多位置可供原子着落,液相扩散来的原子很容易被接纳并与晶体连接起来。由热力学因素可知生长过程中仍可维持粗糙面的界面结构。只要原子沉积供应不成问题,可以不断地进行“连续生长”,其生长方向为界面的法线方向。对于光滑面,由于光滑界面在原子尺度界面是光滑的,单个原子与晶面的结合较弱,容易跑走,因此,只有依靠在界面上出现台阶,然后从液相扩散来的原子沉积在台阶边缘,依靠台阶向侧面生长(“侧面生长”)。台阶形成的方式有三种机制:二维晶核机制,螺旋位错机制,李晶 面 机 制。固-液界面结构通过以下机理晶体影响生长速度:对粗糙界面而言,其生长方式为连续生长,生长速度R与实际过冷度 T成 线 性 关 系。勺-5R T;=U,AT(D为原子的扩散系数,R为气体常数,小为常数)对光滑界面而言:用 ex p-二维晶核台阶生长的速度为 R 2 =一 (口2、b为常数)2螺旋位错台阶生长速度为 Re*(-为 常数)(2)螺旋位错生长机制与二维晶核生长机制的生长速度对过冷度的关系不同点如下:对二维晶核生长机制而言,在AT不大时生长速度凡几乎为零,当达到 一 定 T时R突然增加很快,其生长曲线R T与连续生长曲线相遇,继 续 增 大 完 全 按 连 续 方 式 进 行。对螺旋位错生长机制而言,在过冷度不太大时,速 度 与AT的平方成正比。在过冷度相当大时,其生长速度与连续生长方式相重合。由于其台阶在生长过程中不会消失,生长速度比二维台阶生长要快。止 匕 外,与二维晶核台阶生长相比较,二维晶核在AT小时生长速度儿乎为零,而螺旋位错生长方式在小AT时却已具有一定的生长速度。第四章单相及多相合金的结晶何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数K。所决定?当相图上的液相线和固相线皆为直线时,试证明K。为一常数。答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。溶质再分配不仅由平衡分配系数K。决 定,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。当相图上的液相线和固相线皆为直线时K。为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为叫及m s,虽然d、C;随温度变化有不同值,但K =(-7*)/q mL0 cl-)/叫=%=常 数,此时,K。与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K。为定值。某二元合金相图如右所示。合金液成分为CB=4 0%,置于长瓷舟中并从左端开始凝固。温度梯度大到足以使固-液界面保持平面生长。假设固相无扩散,液相均匀混合。试求:a相与液相之间的平衡分配系数Ko;凝固后共晶体的数量占试棒长度的百分之儿?凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。解:(1)平衡分配系数K。的求解:由于液相线及固相线均为直线不同温度和浓度下K。为定值,所以:如右图,当 T=5 00时,2 3 0%Ko =G=6 0%=0.5K。即 为 所 求 a 相与液相之间的平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程G=C。暧。t代入已知的C;=6 0%,Ko=0.5,C o=CB=4 0%可求出此时的九=4 4.4%由 于 T=5 00C 为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为4 4.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线(并注明r各特征成分及其位置)如下:设上题合金成分为C o=CB=10%o 仁=KC(s 产T证明已凝固部分(,)的平均成分C S为子 1(1一铲当试棒凝固时,液体成分增高,而这又会降低液相线温度。证明液相线温度I,与工之间关系(T,”为纯组元A的熔点,L 为液相线斜率 的 值):TL=Tm-rnLC0(l-fs)K0-1解:(a)C s=J k oC)k df/f sCs=-Cb(l-方)M f /fiC s =刃 _(一 外 广 J s(b)G =cG=口-T,QC(17 s)2在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R|f R2,且R2RI)时,固相成分的变化情况,以及溶质富集层的变化情况。答:在固相无扩散而液相仅有扩散条件下凝固速度变大时(1)固相成分将发生下列变化:当凝固速度增大时,固液界面前沿的液相 色 品和固相都将经历:稳定态一不稳定态-*R 一%.稳定态的过程。如右图所示,当R2R1时在新、旧稳定状态之间,CsCoo重新恢复到稳定时,Cs又回到品。R2上升越多,&2/%越大,不稳定区内Cs越高。(2)溶质富集层的变化情况如下:在其它条件不变的情况下,R越大,在固-液界面前沿溶质富集越严重,曲线越陡峭。如右图所示。兄越大,富集层高度AC越大,过渡区 时 间(A t)越长,过渡区间也就越宽。在新的稳定状态下,富集区的面积将减小。A-B二元合金原始成分为C0=CB=2.5%,Ko=O.2,m=5,自左向右单向凝固,固相无扩散而液相仅有扩散(DL=3 X1 0-Sc m 7 s)o 达到稳定态凝固时,求(1)固-液界面的或和固-液界面保持平整界面的条件。解:求固-液界面的或和:由于固相中无扩散而液相中仅有限扩散的情况下达到稳定状态时,满C*L=且足:K。,C*s=C o代入 CO=CB=2.5%,K o=O.2即可得出:c =co 2.5%K o=_ ET =i 2.5%C*s=Co=2.5%(2)固-液界面保持平整界面的条件:当存在“成分过冷”时,随着的“成分过冷”的增大,固溶体生长方式将 经历:胞状晶一柱状树枝晶一内部等轴晶(自由树枝晶)的转变过程,所以只有当不发生成分过冷时,固-液界面才可保持平整界面,即需满足GL 7 nL e 0 (l-K。)R A K。代入=5,C0=CB=2.5%,D S Xl O-W/s ,Ko=O.2可得出:GLR 2 1.6 7 X 1 0 4 /c m 2 s 即为所求.在同一幅图中表示第一节描述的四种方式的凝固过程中溶质再分配条件下固相成分的分布曲线。答:四种方式凝固过程中溶质再分配条件下固相成分的分布曲线:平衡凝固液相只有有限扩散液相中部分暹盒CoKo.液相充分混合均匀(单向凝固时铸棒内溶质的分布)根据式(4-6),分析有效分配系数KE的三种情况。C*L解:(4一 6a)C。_K_SK0+(-K0)e%C二%CoK0+(l-K0)e%(4-6b)有效分配系数L 的三种情况如下:KE=K(KE最小):发 生 在DL 1时,即快生长速度凝固、或没有任何对流,6.很大的情况下,相 当 于“液相只有有限扩散”的情况。KOKE 1:相当于液相部分混合(对流)的情况,工程实际中常在这一范围。论述成分过冷与热过冷的涵义以及它们之间的区别和联系。成分过冷的涵义:合金在不平衡凝固时,使液固界面前沿的液相中形成溶质富集层,因富集层中各处的合金成分不同,具有不同的熔点,造成液固前沿的液相处于不同的过冷状态,这种由于液固界面前沿合金成分不同造成的过冷。热过冷的涵义:界面液相侧形成的负温度剃度,使得界面前方获得大于AA的过冷度。成分过冷与热过冷的区别:热过冷是由于液体具有较大的过冷度时,在界面向前推移的情况下,结晶潜热的释放而产生的负温度梯度所形成的。可出现在纯金属或合金的凝固过程中,一般都生成树枝晶。成分过冷是由溶质富集所产生,只能出现在合金的凝固过程中,其产生的晶体形貌随成分过冷程度的不同而不同,当过冷程度增大时,固溶体生长方式由无成分过冷时的“平面晶”依次发展为:胞状晶一柱状树枝晶一内部等轴晶(自由树枝晶)。成分过冷与热过冷的联系:对于合金凝固,当出现“热过冷”的影响时,,必 然 受“成分过冷”的影响,而且后者往往更为重要。即使液相一侧不出现负的温度梯度,由于溶质再分配引起界面前沿的溶质富集,从而导致平衡结晶温度的变化。在负温梯下,合金的情况与纯金属相似,合金固溶体结晶易于出现树枝晶形貌。何为成分过冷判据?成分过冷的大小受哪些因素的影响?答:“成分过冷”判据为:IHLCL_1 _ D l上。+;自 编R 1时,K。越大,越有利于成分过冷。(注:其中的G,和R为工艺因素,相对较易加以控制;mL,Co,DL,KO,为材料因素,较难控制)10.分别讨论“成分过冷”对单相固溶体及共晶凝固组织形貌的影响?答:“成分过冷”对单相固溶体组织形貌的影响:随 着“成分过冷

    注意事项

    本文(材料成型基本原理课后答案(一).pdf)为本站会员(无***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开