江苏省2022中考数学冲刺复习-22解答题提升必刷60题①.pdf
22解答题提升必刷60题一.实数的运算(共 1小题)1.(2022 苏州模拟)计算:V 1 2 -H -V3|-3ta n30.二.平 方 差 公 式(共 1小题)2.(2022惠山区一模)(1)计 算:s i n45 -(n-4)+2,(2)化简:(1+a)(1 -)+a(a -2).三.分式的混合运算(共 3 小题)3.(2022吴中区模拟)张老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分:(A )+一=三旦X2-2X+1 X+1 X-1(2)1+(12 2(1)求代数式A,并将其化简:(2)当A=5 时,求 x的值;(3)当时,求 A的值.4.(2022邳州市一模)计算:(1 )(-1 )2022+|-5|-(A)-1+A/12:35.(2022邛江区一模)计算或化简:(1)(-A)+43-2|+2c o s 300;3备a+l f四.分式的化简求值(共 1小题)6.(2022苏州模拟)先化简再求值:3 +1+(1+,-),其中 4=依+1.a-2a+l a-1五.二元一次方程组的应用(共 1小题)7.(2022无锡模拟)某快递公司在我市新设了一处中转站,预计每周将运送快递308 吨.为确保完成任务,该中转站计划向汽车厂家购买电动、燃油两种类型的货车.根据测算,每辆电动货车每周能运送快递4 8 吨,每辆燃油货车每周能运送快递3 6 吨.已知汽车厂1/21家售出1辆电动货车、2 辆燃油货车的总价为39万元;售 出 3 辆电动货车、1 辆燃油货车的总价为57 万元.(1)分别求出每辆电动、燃油货车的价格;(2)考虑到环保因素,电动货车最少购买4 辆,为确保完成每周的快递运送任务,求该中转站最低的购车成本.六.解一元二次方程-配方法(共 1小题)8.(2022海陵区一模)(1)分解因式:3a 2-6a+3;(2)解方程:x2-4x+2=0.七.解 分 式 方 程(共 1小题)9.(2022东海县一模)解方程:=1一2x+2 x+1A.分式方程的应用(共 2 小题)10.(2022祁江区一模)上海新冠肺炎疫情牵动着全国人民的心,为帮助上海人民平稳渡过本次疫情,江苏紧急调配物资驰援上海.现需要运送一批牛肉共计120吨,原计划使用小型冷链车运输,后因车辆调度原因实际调整为大型冷链车运输,每辆车刚好装满的情况下比原计划少用4 辆车,已知每辆大型冷链车运货量比小型冷链车增加5 0%,问每辆小型冷链车和大型冷链车的运货量各是多少吨?1 1.(2 0 1 5苏州)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做6 0 面彩旗与乙做5 0 面彩旗所用时间相等,问:甲、乙每小时各做多少面彩旗?九.解一元一次不等式(共 1小题)1 2.(2 0 2 2 宝应县一模)对于实数a、b,定义一种新运算”,规定如下:a b=a b2-b.例如 3 2=3 X 2 2-2=1 0.(1)若 x=2,则满足条件的x值为;(2)对 于(“-1)x=2,存在两个不同的数值x,求 的取值范围;(3)若时,求 x的取值范围.一十.一次函数的应用(共 3 小题)1 3.(2 0 2 2 南京一模)哥哥弟弟进行1 0 0 米赛跑,哥哥跑得比弟弟快.图1、图 2均描述了两人2次赛跑的实际情形.假设两人2次赛跑的速度保持不变,其中所跑路程为y米,时间为x秒.2/21(1)请描述图1 中两人赛跑的实际情形;(2)求哥哥、弟弟的速度;图1图21 4.(2 0 2 2 玄武区一模)甲、乙两地相距4 0 h ,一辆慢车和一辆快车先后从甲地出发沿同一直道匀速前往乙地.慢车先出发,行驶一段时间后停车休息,待快车追上后立即以原速度匀速行驶,直至到达乙地.快车比慢车晚2 0,”加 出发,始终保持匀速行驶,且比慢车提前到达乙地.两车之间的距离y (单位:k m)与慢车的行驶时间x (单位:min)之间的部分函数图象如图所示.请结合图象解决下面问题:(1)慢车的速度为 km/min-,(2)求线段A8表示的y 与 x之间的函数表达式;(3)请根据题意补全图象.1 5.(2 0 2 2 南京一模)一辆货车和一辆轿车先后从甲地出发,沿一条笔直的公路匀速开往乙地.图中的线段OA和线段3c分别表示货车和轿车离甲地的距离y 与货车出发时间 x (力)之间的函数关系.(1)轿车出发时,两车相距 km;(2)若轿车比货车提前0.6 小时到达乙地,求线段BC对应的函数表达式及的值;(3)若轿车出发1.6 万,此时与货车的距离小于1 2 h ,直接写出轿车速度1,的取值范围.3/21y(k m)3 0 0 -0 1.4 a 5 x(h)一十 一.抛物线与x 轴 的 交 点(共 1 小题)1 6.(2 0 2 2 南京一模)已知二次函数y=a(x -1)(x-1 -a)(a为常数,且 aW O).(1)求证:该函数的图象与x 轴总有两个公共点;(2)若 点(0,y i),(3,2)在函数图象上,比较y i 与”的大小;(3)当 0 x 3 时,y 5)给村级经济合作社,物价部门要求该产品销售定价不得超过每盒75元,该企业在严格执行物价部门的定价前提下欲使每天赠后的日销售利润随产品售价的增大而增大,求 a的取值范围.一十三.二次函数综合题(共2 小题)4/211 9.(2 0 2 2秦淮区一模)阅读下面的问题及其解决途径.问题:将函数),=-3的图象向右平移2个单位长度,所得到的图象对应的函数表达式是什么?,”点在原函数图像壬:结合阅读内容,完成下面的问题.(1)填写下面的空格.问题:将函数y=旦的图象向左平移1个单位长度,所得到的图象对应的函数表达式是x什么?(2)将 函 数y=-2?+3x+l的 图 象 沿y轴翻折,所得到的图象对应的函数表达式为.(3)将函数y=o?+6x+c (“,b,c,是常数,“W 0)的图象先向左平移1个单位长度,再沿y轴翻折,最后绕原点旋转1 8 0 ,求所得到的图象对应的函数表达式.2 0.(2 0 2 2玄武区一模)已知二次函数y=C x-m-2)(机为常数).(1)求证:不论相为何值,该函数的图象与x轴总有两个公共点;(2)二次函数的图象与x轴交于点M,N,与y轴交于点P,若 M NP是等腰直角三角形,则机的值为;(3)点A (1,y),B(2,”),C(3,*)在二次函数的图象上,当3 V o时,结合函数图象,直接写出机的取值范围.5/21【参考答案】一.实数的运算(共 1小题)1.(2022苏州模拟)计算:A/1 2-|1-V3|-3tan3O.【解析】解:原式=2代-北+1-3 X 返32y3-V 3+1 -V 31.二.平方差公式(共 1小题)2.(2022惠山区一模)(1)计算:sin45-(n-4)+2(2)化简:(1+)(1 -a)+a(a-2).【解析】解:(1)原式=Y Z-i+工2 2=V 2 _ 12 2-V 2-1.2,(2)原式=1-2a=1-2a.三.分式的混合运算(共 3 小题)3.(2022吴中区模拟)张老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分:(A3 )+*-=主 也.X2-2X+1 X+1 X-1(1)求代数式A,并将其化简;(2)当A=5 时,求 x 的值:(3)当x=J 3+l时,求 A 的值.【解析】解:(1)由题意得:日 2 1.=x+1 x q x TX-1 x+1 X2-2X+16/21=X +(x+1)(x-1)x-1 (x-1)*2=2+运54.(2 0 2 2 邳州市一模)计算:(1 )(-1 )2 0 2 2+|-5|-(A)-+V I 2;3【解析】解:(1)(-1)2 0 2 2+|-5|-(1)X+4Y13=1+5 -3+2 V 3=3+2:(2)-4-(1 -A-)22/(a-1)(a+1)a=1a+15.(2 0 2 2 邛江区一模)计算或化简:=+2 lX-1 X-1=x+x+lX-1=2 x+lX-1(2)当 A=5 时,i k=5,X-12x+5(x-1).解得:x=2,检验:当x=2时,x -I WO,:.x=2是原方程的根;(3)当=遍+1 时,A=2喳+1)tl_V 5+1-12A/5+2+17/21(1)(-A)-1+|V 3 -2|+2 c o s 3 0 ;3 小+1).簧【解析】解:(-A)+|V 3 -2|+2 c o s 3 0 3=-3+2 -百+2 X 限2=-3+2 -V s H/3=-1;备a+l T=3-(a2 T).a+1a+1 a-2=-(a-2)(a+2).a+1a+1 a-2=-2.四.分式的化简求值(共 1 小题)6.(2 0 2 2 苏州模拟)先化简再求值:+(1+2),其中”=J E+1.a-2a+l al【解析】解:原式(a-1)2 a-1a+1 a-1(a-1)2 a+1=1当 =+1 时,原式一=返.V3+1-1 3五.二元一次方程组的应用(共 1 小题)7.(2 0 2 2 无锡模拟)某快递公司在我市新设了一处中转站,预计每周将运送快递3 0 8 吨.为确保完成任务,该中转站计划向汽车厂家购买电动、燃油两种类型的货车.根据测算,每辆电动货车每周能运送快递4 8 吨,每辆燃油货车每周能运送快递3 6 吨.己知汽车厂家售出1 辆电动货车、2辆燃油货车的总价为3 9 万元;售出3辆电动货车、1 辆燃油货车的总价为5 7万元.(1)分别求出每辆电动、燃油货车的价格;8/21(2)考虑到环保因素,电动货车最少购买4辆,为确保完成每周的快递运送任务,求该中转站最低的购车成本.【解析】解:(1)设每辆电动货车的价格为x万元,每辆燃油货车的价格为y万元,由题意得:卜+2丫=39,3x+y=57解得:卜 松,ly=12答:每辆电动货车的价格为15万元,每辆燃油货车的价格为12万元;(2)设购买电动货车,辆,燃油货车八辆,由题意得:4 8瓶+36 2 308,整理得:n I L -1m,9 3;杉4,4,I II 16,3 3.71-429,9 3 9 在9.为正整数,中转站购车最少为:机=4、=4,此时购车成本为:4 X 15+4 X 12=108 (万元),该中转站最低的购车成本为108万元,答:该中转站最低的购车成本为108万元.六.解一元二次方程-配方法(共 1小题)8.(2 02 2海陵区一模)(I)分解因式:3a2-6 a+3;(2)解方程:x2-4 x+2=0.【解析】解:(1)原式=3(/-2 a+l)=3(a-1)2;(2)%2-4 x+2=0,x2-4x=-2,x2-4 x+4=2(x-2)2=2,9/21x-2=&,所以 x =2+&,X2-2-y/2.七.解 分 式 方 程(共 1小题)9.(2 02 2 东海县一模)解方程:二 _ =i _.2x+2 x+1【解析】解:方程的两边都乘以2 (x+1),得3=2 x+2 -2.解得尢=旦,2经检验:x=g 是原分式方程的解.2八.分式方程的应用(共 2 小题)10.(2 02 2 祁江区一模)上海新冠肺炎疫情牵动着全国人民的心,为帮助上海人民平稳渡过本次疫情,江苏紧急调配物资驰援上海.现需要运送一批牛肉共计12 0吨,原计划使用小型冷链车运输,后因车辆调度原因实际调整为大型冷链车运输,每辆车刚好装满的情况下比原计划少用4辆车,已知每辆大型冷链车运货量比小型冷链车增加5 0%,问每辆小型冷链车和大型冷链车的运货量各是多少吨?【解析】解:设每辆小型冷链车的运货量为x吨,则每辆大型冷链车的运货量为(1+5 0%)x吨,由题意得:侬-1 20 _=4,x(1+50%)x解得:x=10,经检验,x=10是原方程的解,且符合题意,则(1+5 0%)x=15,答:每辆小型冷链车的运货量为10吨,则每辆大型冷链车的运货量为15 吨.11.(2 015 苏州)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做6 0 面彩旗与乙做5 0 面彩旗所用时间相等,问:甲、乙每小时各做多少面彩旗?【解析】解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗,依题意有-6-0-_50,x+5 x解得:x=2 5.经检验:x=2 5 是原方程的解.10/21x+5=2 5+5=30.故甲每小时做30面彩旗,乙每小时做2 5 面彩旗.九.解一元一次不等式(共 1 小题)12.(2 02 2 宝应县一模)对于实数a、b,定 义 一 种 新 运 算 规 定 如 下:a h=a b2-b.例如 3 2=3X 2 2-2=10.(1)若 1 9=2,则满足条件的x值为 2或-1;(2)对 于(。-1)x=2,存在两个不同的数值-求。的取值范围;(3)若时,求 x的取值范围.【解析】解:(1)1x=2,:-x=2,BP x2-x -2=0,:.(x-2)(x+1)=0,A x -2=0 或 x+l=0,.*.x=2 或-1,故答案为:2或-1;(2)由题意得:(a-1)x2-冗=2,即,(a-I)-x-2=0,存在两个不同的数值无,,fa-170l+8(a-l)0 解得,工且8(3)由题意得:2/-x 4 x-2,解得,乂 2.一十.一次函数的应用(共3 小题)13.(2 02 2 南京一模)哥哥弟弟进行100米赛跑,哥哥跑得比弟弟快.图1、图 2均描述了两人2次赛跑的实际情形.假设两人2次赛跑的速度保持不变,其中所跑路程为),米,时间为x秒.(1)请描述图1 中两人赛跑的实际情形;(2)求哥哥、弟弟的速度;(3)求图2中直线AB对应的函数表达式.11/21【解析】解:(1)由题意可得,图 1 中两人赛跑的实际情形是:弟弟先跑两秒,然后哥哥出发,两人同时到达终点,弟弟一共用了 14 秒,哥哥一共用了 12 秒;(2)由图1可得,哥哥的速度为:100+(14 -2)=1004-12=空(米/秒),3弟弟的速度为:100+14=强(米/秒),7答:哥哥的速度为空米/秒,弟弟的速度为毁米/秒;3 7(3)点 A的纵坐标为:蚂 乂 2=迎,7 7则点A的坐标为(0,独),7设直线A B对应的函数表达式为),=h+儿.点A (0,也&),点 8 (12,100)在该直线上,7f,100 .b=7(,12k+b=100.直线A B对应的函数表达式为),=平 X+翠.14.(2 02 2 玄武区一模)甲、乙两地相距4 0M?,一辆慢车和一辆快车先后从甲地出发沿同一直道匀速前往乙地.慢车先出发,行驶一段时间后停车休息,待快车追上后立即以原速度匀速行驶,直至到达乙地.快车比慢车晚2 0机加出发,始终保持匀速行驶,且比慢12/21车提前到达乙地.两车之间的距离y (单位:k m)与慢车的行驶时间x (单位:加 沅)之间的部分函数图象如图所示.请结合图象解决下面问题:(1)慢车的速度为 km/min-,2(2)求线段A B表示的y与x之间的函数表达式;(3)请根据题意补全图象.【解析】解:(1)由图象得:慢车2 0根 山行驶1 O h ,慢车的速度为:10+2 0=工(km/min),2故答案为:1;2(2)设线段A 8表示的),与x之间的函数关系式为),=&+/,将(2 0,10)(3 0,5)代入 得:I30k+b=5解得:K 2,b=20线段A B表示的y与x之间的函数关系式为y=-x+2 0(2 0W x W 3 0);30 x4-5(3)快车的速度为:-=1(km/min),30-20快车追上慢车时x=3 0+5+1=3 5 Cmin),快车到达乙地用时4 0+1=4 0(min),此 时,x=4 0+2 0=6 0(min),慢车到达乙地用时4 04-A+5 =8 5 (”),2补全图象如图:13/2115.(2 02 2 南京一模)一辆货车和一辆轿车先后从甲地出发,沿一条笔直的公路匀速开往乙地.图中的线段OA和线段BC分别表示货车和轿车离甲地的距离y (h )与货车出发时间x ()之间的函数关系.(1)轿车出发时,两车相距 8 4 km;(2)若轿车比货车提前0.6 小时到达乙地,求线段5c对应的函数表达式及。的值;(3)若轿车出发1.6 ,此时与货车的距离小于12km,直接写出轿车速度v 的取值范围.【解析】解:(1)由图象可知,货车5 行驶3 00k m,货车速度是 3 00+5=6 0(kmih),轿车出发时,两车相距6 0X 1.4=8 4 (km),故答案为:8 4;(2)若轿车比货车提前0.6 小时到达乙地,则 C (4.4,3 00),设线段BC对 应 的 函 数 表 达 式 为 将 C (4.4,3 00),B(1.4,0)代入得:4.4k+b=300(11.4k+b=0 解得(k=100,lb=-140二线段B C对应的函数表达式为y=100 x-14 0;由图象可知,。小时轿车追上货车,.1006 7 -14 0=6 0a,14/21解得a=3.5,的值为3.5;(3)I轿车出发1.6%,与货车的距离小于12皿,.1.6 V-(1.4+1.6)X 6 0 12(1.4+1.6)X 6 0-l.6 V 12 解得:105 V v 12 0,.轿车速度v的取值范围是105 v 12 0.一十一.抛物线与x轴 的 交 点(共1小题)16.(2 02 2南京一模)已知二次函数y=a (x -1)(x-I -a)(a为常数,且a W O).(1)求证:该函数的图象与x轴总有两个公共点;(2)若 点(0,山),(3,在函数图象上,比较尹与”的大小;(3)当0 x 3时,y l 时,yy2,当 a=l 时,y=y2t当 OV a V l 时,y 0 时,二次函数的图像开口向上,V0 x3,a2+a2,,-2a2+4a42解得:-2W aW l,:.0 a l,当“0 时,二次函数图像开口向下,:对称轴x=2Z,2当 0生 2 V 3,即_ 2 。0 时,2二次函数图象在顶点处取得最大值,2-A _ 24解得:-2,-2VV0,当2 t 曳W 0,即“W-2,2由题意可知,J+aW Z,解得:-2W aW l,即 a-2,综上所述,当 0 x 3 时,y2,的取值范围是:-2 “W 1,且“WO.一十 二.二次函数的应用(共 2 小题)17.(2022连云港一模)已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,1216/21 x 2 4)满足一次函数的关系,部分数据如表:X (元/件)1 21 31 41 51 6y (件)1 2 001 1 001 0009008 00(1)求 y与 x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为4 00件.试 问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.【解析】解:(1)设 y与 x的函数关系式为1 2 k+b=1 2 00l l 3 k+b=1 1 00,解得:尸1 00,l b=2 4 00即y与 x的函数关系式是y=-l OOx+2 4 00;(2)设总利润为w元,w=(x-1 0)(-W Ox+2 4 00)+(x-2 -1 0)X 4 00=-1 00(x-1 9)2+7 3 00,V -1 000,1 2 5)给村级经济合作社,物价部门要求该产品销售定价不得超过每盒7 5元,该企业在严格执行物价部门的定价前提下欲使每天赠后的日销售利润随产品售价的增大而增大,求”的取值范围.【解析】解:(1)w=(x-3 0)5 00-10(x-6 0)=-10?+14 00 x -3 3 000,答:w关于x的函数解析式为w=-l O f+MO O x -3 3 000;(2)w=-10?+14 00 x-3 3 000=-10(x-7 0)2+16 000,V -100,17/21,当x=7 0 时,w最大为16 000,答:当每盒售价订为7 0元时,可使当天获得最大销售利润,销售利润是16 000元;(3)设每天捐赠后的利润为w 元,则 w =(x-3 0-a)(1100-10 x)=-10 x2+(14 00+10a)x-(3 3 000+1100。),一 旦=-1400+10a=7 0+3,2a-20 2;6 0 7 4.5,解得 a 9,2V x-3 0-t z 0,6 0Wx W7 5,.3 0,所以a的取值范围是9 a =扇+23;.P(0,m2+2m).由题意得,M N P 是等腰直角三角形,.m2+2m=-1,解得,=-1.故答案为:-1;20/21(3)法一:根据题意可知,需要分三种情况:当有1个点在x轴下方时,有/n l V,w+2V 23或1V2 V m 3 山+3,解 得-或 2V/n 3;当有3个点在无轴下方时,*.*m+2-m=2 V 3,此种情况不存在;综上可知,加的取值范围为:-IV/nVO或2 VmV3.法二:由题意可知I,y=(1 -/H)(1 -/n-2)=(m-1)(m+1),”=(2-加)(2-机-2)=m(m-2),”=(3 -相)(3 -/n-2)=Cm-1)Cm-3),Vyi y2*y3 0,:.Cm-1)(/7?+l)/?(n?-2)*(nz-1)(/?-3)0,即 tn(/?+1 )(n?-2)(/w-3)(m-1)2 m?-2 n?-3,当负数有1个时,m-3 0,:.2m0且 加 0,-K/n 0,:.m的取值范围为:-1 M 0 或2 m 3.2 1/2 1