欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数学:1.3.1《函数的基本性质》课件ppt.ppt

    • 资源ID:91013496       资源大小:2.12MB        全文页数:55页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学:1.3.1《函数的基本性质》课件ppt.ppt

    1品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1.3.1 1.3.1 函数的基本性质函数的基本性质2品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去教学目的(1)通过已学过的函数特别是二次函数,理解函数的单调)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性)能够熟练应用定义判断数在某区间上的的单调性教学重点:函数的单调性及其几何意义教学重点:函数的单调性及其几何意义教学难点:利用函数的单调性定义判断、证明函数的单调性教学难点:利用函数的单调性定义判断、证明函数的单调性 3品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 观察下列各个函数的图象,并说说它们观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律分别反映了相应函数的哪些变化规律:1、观察这三个图象,你能说出图象的特征吗?、观察这三个图象,你能说出图象的特征吗?2、随随x的增大,的增大,y的值有什么变化?的值有什么变化?4品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去5品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1.3.1 单调性与最大(小)值6品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去请观察函数请观察函数y=x2与与y=x3图象,回答下列问题:图象,回答下列问题:1 1、当、当x0 x0,+)+),x x增大时,图(增大时,图(1 1)中的)中的y y值值 ;图(;图(2 2)中的)中的y y值值 。2 2、当、当x(x(,0)0),x x增大时,图(增大时,图(1 1)中的)中的y y值值 ;图(;图(2 2)中的)中的y y值值 。增大增大增大增大增大增大减小减小7品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去3 3、分别指出图、分别指出图(1)(1)、图、图(2)(2)中,当中,当x x 00,+)+)和和x(x(,0)0)时,函数图象是时,函数图象是上升上升的还是的还是下降下降的?的?4 4、通过前面的讨论,你发现了什么?、通过前面的讨论,你发现了什么?结论:若一个函数在某个区间内图象是上升的,则函数值y随x的增大而增大,反之亦真;若一个函数在某个区间内图象是下降的,则函数值y随x的增大而减小,反之亦真。8品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去观察某城市一天24小时气温变化图 f(t),t0,24 问题:问题:如何描述气温如何描述气温随时间随时间t的变化情况?的变化情况?9品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去(t1,1)(t2,2)t1t2问题:在区间4,14上,如何用数学符号语言来刻画“随t的增大而增大”这一特征?如如图图,研研究究函函数数f(t),t0,24的的图图象在区间象在区间4,14上的变化情况上的变化情况10品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 在在4,14上上,取取几几个个不不同同的的输输入入值值,例例如如t15,t26,t3 8,t410,得得到到相相对对应应的的输输出出值值1,2,3,4在在t1t2t3t4时时,有有1234,所所以以在在4,14上上,随随t的的增增大而增大大而增大tO 取取区区间间内内n个个输输入入值值t1,t2,t3,tn,得得到到相相对对应应的的输输出出值值1,2,3,n,在在t1t2t3tn时时,有有123n,所以在区间所以在区间4,14上,上,随随t的增大而增大的增大而增大 在在4,14上上任任取取两两个个值值t1,t2,只只要要t1t2,就就有有12,就就可可以以说说在在区区间间4,14上上,随随t的增大而增大的增大而增大 11品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去问题:问题:设设函函数数yf(x)的的定定义义域域为为A,区区间间I A,在在区区间间I上上,y随随x的的增增大大而而增增大大,该该如如何何用用数学符号语言来刻画呢?数学符号语言来刻画呢?在在4,14上内任取两个值上内任取两个值t1,t2,只要,只要t1t2,就有,就有12,就可以说在区间,就可以说在区间4,14上,上,随随t的增大而增大的增大而增大 12品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 函数函数yf(x)的定义域为的定义域为A,区间,区间I A,如,如果对于区间果对于区间I内的内的任意任意两个值两个值x1,x2,当当x1x2时,都有时,都有f(x1)f(x2),那么就说函数那么就说函数y=f(x)在区间在区间I上是上是单调增函数单调增函数,区间区间I称为函数称为函数y=f(x)的的单调增区间单调增区间.13品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去问题:问题:如何定义单调减函数和单调减区间呢?如何定义单调减函数和单调减区间呢?14品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 函数函数yf(x)的定义域为的定义域为A,区间,区间I A,如,如果对于区间果对于区间I内的内的任意任意两个值两个值x1,x2 当当x1x2时,都有时,都有f(x1)f(x2),那么就说函数那么就说函数y=f(x)在区间在区间I上是上是单调减函数单调减函数,区间区间I称为函数称为函数y=f(x)的的单调减区间单调减区间.15品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1.函数函数yf(x),x 0,3的图象如图所示的图象如图所示Oxy123区间区间0,3是该函数的单调增区间吗?是该函数的单调增区间吗?概念辨析概念辨析16品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 2.对对于于二二次次函函数数f(x)x2,因因为为1,2(,),当当12时时,f(1)f(2),所所以以函函数数f(x)x2在区间在区间(,)上是单调增函数上是单调增函数 3.已已知知函函数数yf(x)的的定定义义域域为为0,),若若对对于于任任意意的的x20,都都有有f(x2)f(0),则则函函数数yf(x)在区间在区间0,)上是单调减函数上是单调减函数 yxOx2f(x2)判断判断17品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去yx10 x2xf(x1)f(x2)设函数设函数f(x)的定义域为的定义域为I:如果对于如果对于属于定义域属于定义域I内某个内某个区间区间上的上的任意任意两个自变量的两个自变量的值值x1,x2,当当x1x2时时,都有都有f(x1)f(x2),那么就说那么就说f(x)在在这个区间上是这个区间上是增函数增函数增函数增函数一、增函数18品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 如果函数如果函数y=f(x)在某个区间是增函数或减函数在某个区间是增函数或减函数,那么就说函数那么就说函数y=f(x)在这个区间具有在这个区间具有(严格的严格的)单调单调单调单调性性性性,这一区间叫做这一区间叫做y=f(x)的的单调区间单调区间单调区间单调区间.yf(x1)f(x2)x10 x2x设函数设函数f(x)的定义域为的定义域为I:如果对于如果对于属于定义域属于定义域I内某个内某个区间区间上的上的任意任意两个自变量的两个自变量的值值x1,x2,当当x1x2时时,都有都有f(x1)f(x2),那么就说那么就说f(x)在在这个区间上是这个区间上是减函数减函数减函数减函数二、减函数三、单调性与单调区间19品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去请问请问:在单调区间上增函数的图象是在单调区间上增函数的图象是_,减函数的图象是减函数的图象是_.(填填“上升的上升的”或或“下降的下降的”)上升的上升的下降的下降的想一想想一想 :如何从一个函数的图象来判断这个:如何从一个函数的图象来判断这个函数在定义域内的某个单调区间上是增函数函数在定义域内的某个单调区间上是增函数还是减函数?还是减函数?如果这个函数在某个单调区间上的图象如果这个函数在某个单调区间上的图象是上升的,那么它在这个单调区间上就是增是上升的,那么它在这个单调区间上就是增函数;如果图象是下降的,那么它在这个单函数;如果图象是下降的,那么它在这个单调区间上就是减函数。调区间上就是减函数。20品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1、增函数、减函数的三个特征:、增函数、减函数的三个特征:(1)局部性:局部性:也就是说它肯定有一个区间。区间可以是整个定义域,也可以是其真子集,因此,我们说增函数、减函数时,必须指明它所在的区间。如y=x+1(XZ)不具有单调性不具有单调性(2)任意性任意性:它的取值是在区间上的任意两个自变量,决不能理解为很多或无穷多个值。(3)一致性一致性增函数:f()f()减函数:f()f()21品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例例1.下图是定义在下图是定义在 闭区间闭区间-5,5上的函数上的函数y=f(x)的图的图象象,根据图象说出根据图象说出y=f(x)的单调区间的单调区间,以及在每个单调以及在每个单调区间上区间上,y=f(x)是增函数还是减函数是增函数还是减函数?解解:函数函数y=f(x)的单调区间有的单调区间有-5,-2),-2,1),1,3),3,5,其中其中y=f(x)在区间在区间-5,-2),1,3)上是减函数上是减函数,在区间在区间-2,1),3,5上是增函数上是增函数.22品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例例2:物理学中的玻意耳定律:物理学中的玻意耳定律 (k为正常数)为正常数)告诉我们,对于一定量的气体,当其体积告诉我们,对于一定量的气体,当其体积V减小时,减小时,压强压强p将增大。试用函数的单调性证明之。将增大。试用函数的单调性证明之。Vkp=分析:按题意,只要证明函数在区间上是减函数分析:按题意,只要证明函数在区间上是减函数即可。即可。23品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 例例2、物理学中的玻意耳定律、物理学中的玻意耳定律 告诉告诉我们,对于一定量的气体,当其体积我们,对于一定量的气体,当其体积V减小时,压减小时,压强强p将增大。试用函数的单调性证明之。将增大。试用函数的单调性证明之。证明:证明:根据单调性的定义,设V1,V2是定义域(0,+)上的任意两个实数,且V1V2,则由V1,V2(0,+)且V10,V2-V1 0又k0,于是 所以,函数 是减函数.也就是说,当体积V减少时,压强p将增大.取值定号变形作差结论结论24品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例:证明函数:证明函数f(x)=x3在在R上是增函数上是增函数.证明:设:设x1,x2是是R上任意两个上任意两个 实数,实数,且且x1x2,则则 f(x1)-f(x2)=x13-x23 =(x1-x2)(x12+x1x2+x22)=(x1-x2)(x1+x2)2+x22 因为因为 x1x2,则,则 x1-x2 0 所以所以 f(x1)-f(x2)0 即即 f(x1)f(x2)所以所以f(x)=x3在在R上是增函数上是增函数.25品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去探究:探究:画出反比例函数画出反比例函数 的图象。的图象。(1)这个函数的定义域)这个函数的定义域I是什么?是什么?(2)它在定义域)它在定义域I上的单调性是怎样的?证明上的单调性是怎样的?证明你的结论。你的结论。通过观察图象,先对函数是否具有某种性质做通过观察图象,先对函数是否具有某种性质做出猜想,然后通过逻辑推理,证明这种猜想的正确出猜想,然后通过逻辑推理,证明这种猜想的正确性,是研究函数性质的一种常用方法。性,是研究函数性质的一种常用方法。26品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去证明:证明:证明:证明:设设x1,x2(0,+),且),且x1x2,则,则111Ox y1f(x)在定义域)在定义域上是减函数吗?上是减函数吗?取取x1=-1,x2=1f(-1)=-1f(1)=1-11f(-1)f(1)27品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去用定义证明函数的单调性的步骤用定义证明函数的单调性的步骤:(1).设设x1x2,并是某个区间上任意二并是某个区间上任意二值值;(2).作差作差 f(x1)f(x2);(3).判判断断 f(x1)f(x2)的符的符号号:(4).作作结论结论.分解因式分解因式,得出因式得出因式(x1x2 配成非负实数和。配成非负实数和。方法小结方法小结有理化。有理化。28品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去5、讨论函数、讨论函数f(x)=x+1x在在(0,+)上的单调性上的单调性.解:设解:设 0 x1 x2 则则 f(x1)f(x2)=(x1-x2)+1 x11 x2=-(x1 x2)(x1 x2 1)x1x2 0 x1 x2 x1-x2 0当当0 x1 x2 1时,时,x1 x2 1,x1 x2 1 0 f(x1)f(x2)f(x2)f(x)=x+1x在在(0,1上是减函数上是减函数.当当1 x1 1,x1 x2 1 0 f(x1)f(x2)0 即即 f(x1)0)在x0上的单调性解:对于x2x10,f(x2)-f(x1)=x2-x1+-=(x1x2-k)因0X12-k x1x2-k x22-k故x22-k0即x2时,f(x2)f(x1)总之,f(x)的增区间是 ,减区间是30品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去图象上有一个最低点(图象上有一个最低点(0,0),即对于任意的),即对于任意的 ,都有都有图象没有最低点。图象没有最低点。31品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去画出下列函数的草图,并根据图象解答下列问题画出下列函数的草图,并根据图象解答下列问题:1 说说出出y=f(x)的的单单调调区区间间,以以及及在在各各单单调调区区间间上上的的单调性;单调性;2 指出图象的最高点或最低点,并说明它能体现指出图象的最高点或最低点,并说明它能体现函数的什么特征?函数的什么特征?(1)(2)xyooxy2-132品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 1最大值最大值 一般地,设函数一般地,设函数y=f(x)的定义域为的定义域为I,如果,如果存在实数存在实数M满足:满足:(1)对于任意的)对于任意的xI,都有,都有f(x)M;(2)存在)存在x0I,使得,使得f(x0)=M那么,称那么,称M是函数是函数y=f(x)的的最大值最大值 33品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去2最小值最小值 一般地,设函数一般地,设函数y=f(x)的定义域为的定义域为I,如果,如果存在实数存在实数M满足:满足:(1)对于任意的)对于任意的xI,都有,都有f(x)M;(2)存在)存在x0I,使得,使得f(x0)=M那么,称那么,称M是函数是函数y=f(x)的的最小值最小值 34品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去2、函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的xI,都有f(x)M(f(x)M)注意:注意:1、函数最大(小)值首先应该是某一个函数值,即存在x0I,使得f(x0)=M;35品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例例3、“菊花菊花”烟花是最壮观的烟花之一烟花是最壮观的烟花之一.制造时制造时一般是期望在它达到最高点一般是期望在它达到最高点(大约是在距地面高度大约是在距地面高度25m到到30m处处)时爆裂时爆裂.如果在距地面高度如果在距地面高度18m的的地方点火,并且烟花冲出的速度是地方点火,并且烟花冲出的速度是14.7m/s.(1)写出烟花距地面的高度与写出烟花距地面的高度与时间之间的关系式时间之间的关系式.(2)烟花冲出后什么时候是烟花冲出后什么时候是它爆裂的最佳时刻它爆裂的最佳时刻?这时距地这时距地面的高度是多少面的高度是多少(精确到精确到1m).36品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去解解:(1)设烟花在设烟花在t秒时距地面的高度为秒时距地面的高度为h m,则由物体运则由物体运动原理可知:动原理可知:h(t)=-4.9t2+14.7t+18(2)作出函数作出函数h(t)=-4.9t2+14.7t+18的图象的图象(如右图如右图).显显然,函数图象的顶点就是烟花上升的最高点,顶点的然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度地面的高度.由于二次函数的知识,对于由于二次函数的知识,对于h(t)=-4.9t2+14.7t+18,我们有我们有:于是,烟花冲出后于是,烟花冲出后1.5秒是它爆裂的最佳时刻秒是它爆裂的最佳时刻,这这时距地面的高度为时距地面的高度为29 m.37品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例3.求函数 在区间2,6上的最大值和最小值 解:设x1,x2是区间2,6上的任意两个实数,且x1x2,则由于2x1x20,(x1-1)(x2-1)0,于是所以,函数 是区间2,6上的减函数.38品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 因此,函数 在区间2,6上的两个端点上分别取得最大值和最小值,即在点x=2时取最大值,最大值是2,在x=6时取最小值,最小值为0.4.39品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去(二)(二)利用函数单调性判断函数的最大利用函数单调性判断函数的最大(小小)值的方法值的方法 1.利用二次函数的性质(配方法)求函数的最大(小)值 2.利用图象求函数的最大(小)值 3.利用函数单调性的判断函数的最大(小)值 如果函数如果函数y=f(x)在区间在区间a,b上单调递上单调递增增,则函数,则函数y=f(x)在在x=a处有处有最小值最小值f(a),在在x=b处有处有最大值最大值f(b);如果函数如果函数y=f(x)在区间在区间a,b上单调递上单调递减减,在区,在区间间b,c上单调递上单调递增增则函数则函数y=f(x)在在x=b处有处有最小值最小值f(b);40品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去课堂练习课堂练习1、函数、函数f(x)=x2+4ax+2在区间在区间(-,6内递减,内递减,则则a的取值范围是的取值范围是()A、a3 B、a3C、a-3 D、a-3D2、在已知函数、在已知函数f(x)=4x2-mx+1,在在(-,-2上上递减,在递减,在-2,+)上递增,则上递增,则f(x)在在1,2上上的值域的值域_.21,3941品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去归纳小结归纳小结 1 1、函数的最大(小)值及其几何意义、函数的最大(小)值及其几何意义 2 2、利用函数的单调性求函数的最大(小)值、利用函数的单调性求函数的最大(小)值 42品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去证明:函数证明:函数f(x)=1/x f(x)=1/x 在在(0(0,+)+)上是减函数。上是减函数。证明:证明:设设x1,x2是是(0(0,+)+)上任意两个实数,上任意两个实数,且且x10,又由又由x10所以所以f(x1)-f(x2)0,即即f(x1)f(x2)因此因此 f(x)=1/x 在在(0,+)上是减函数。上是减函数。取值判断符号变形作差下结论43品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例题讲解:例例1 设函数设函数 f(x)=x2-2x-3.3在区间在区间t,t+1上的最小上的最小值为值为g(t),求,求g(t)的解析式。的解析式。分析分析解:解:f(x)=(x-1)2-4.3,对称轴为,对称轴为x=1(2)当当0t 1时,则时,则g(t)=f(1)=-4.3;(1)当当t1时,则时,则g(t)=f(t)=t2-2t-3.3;(3)当当t+11,即,即t0时,则时,则g(t)=f(t+1)=t2-4.3;t2-2t-3.3;(0t 1)g(t)=(t1)44品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 例例2 求求 f(x)=x2-a-ax+a在区间在区间-1,1上的最值。上的最值。分析分析45品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 例例2 求求 f(x)=x2-a-ax+a在区间在区间-1,1上的最值。上的最值。分析分析解:解:f(x)=(x-)2+a-,对称轴为,对称轴为x=(1)若若 ,即,即a-2时,时,f(x)min=f(-1)=1+2a1+2a,f(x)max=f(1)=1;(4)若若 ,即即a2时,时,f(x)min=f(1)=1,f(x)max=f(-1)=1+2a;(2)若若-1 0,即即-2a0时,时,f(x)min=f()=a-a2/4,f(x)max=f(1)=1;(3)若若0 1,即即0 0a2时,时,f(x)min=f()=a-a2/4,f(x)max=f(-1)=1+2a;46品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去一般地,设函数一般地,设函数y=f(x)的定义域为的定义域为I,如果存在,如果存在实数实数M满足:满足:(1)对于任意的)对于任意的 ,都有,都有 ;(2)存在)存在 ,使得,使得那么,我们称那么,我们称M是函数是函数y=f(x)的最大值的最大值(maximum value)。)。四、函数的最大值四、函数的最大值注意:注意:函数最大(小)首先应该是某一个函数值,即存在函数最大(小)首先应该是某一个函数值,即存在 ,使得,使得 ;函数最大(小)应该是所有函数值中最大(小)的,即对于任意的 ,都有 47品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例例1:“菊花菊花”烟花是最壮观的烟花之一。制造时烟花是最壮观的烟花之一。制造时一般是期望在它达到最高点时爆裂如果烟花距一般是期望在它达到最高点时爆裂如果烟花距地面的高度地面的高度hm与时间与时间ts之间的关系为之间的关系为 ,那么烟花冲出后什么时候是,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的它爆裂的最佳时刻?这时距地面的高度是多少(精确到高度是多少(精确到1m)?)?48品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去分析:由函数分析:由函数 的图象可知,函数的图象可知,函数在区间在区间2,6上递减上递减.所以,函数在区间所以,函数在区间2,6的的两个端点上分别取得最大值和最小值。两个端点上分别取得最大值和最小值。49品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去(一)创设情景,揭示课题(一)创设情景,揭示课题画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征?特征?50品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1函数最大(小)值定义函数最大(小)值定义最大值:一般地最大值:一般地 ,设函数的定义域为,设函数的定义域为I如果存在实数如果存在实数M满足:满足:(1)对于任意的)对于任意的 ,都有,都有 ;(2)存在)存在 ,使得,使得 那么,称那么,称M是函数是函数 的最大值的最大值思考:依照函数最大值的定义,结出函数思考:依照函数最大值的定义,结出函数 的最小值的定义的最小值的定义注意:注意:函数最大(小)首先应该是某一个函数值,函数最大(小)首先应该是某一个函数值,即存在即存在 ,使得,使得 ;51品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去函数最大(小)应该是所有函数值中最大(小)的,即对于任意的函数最大(小)应该是所有函数值中最大(小)的,即对于任意的 ,都有都有 2利用函数单调性来判断函数最大(小)值的方法利用函数单调性来判断函数最大(小)值的方法配方法配方法 换元法换元法 数形结合法数形结合法52品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例例1:“菊花菊花”烟花是最壮观的烟花之一。制造时烟花是最壮观的烟花之一。制造时一般是期望在它达到最高点时爆裂如果烟花距一般是期望在它达到最高点时爆裂如果烟花距地面的高度地面的高度hm与时间与时间ts之间的关系为之间的关系为 ,那么烟花冲出后什么时候是,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的它爆裂的最佳时刻?这时距地面的高度是多少(精确到高度是多少(精确到1m)?)?53品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例例2将进货单价将进货单价40元的商品按元的商品按50元一个售出时,能卖出元一个售出时,能卖出500个,若此商品每个涨个,若此商品每个涨价价1元,其销售量减少元,其销售量减少10个,为了赚到最大利润,售价应定为多少?个,为了赚到最大利润,售价应定为多少?解:设利润为解:设利润为 元,每个售价为元,每个售价为 元,则每个涨(元,则每个涨(50)元,从而销售量减少)元,从而销售量减少 100)答:为了赚取最大利润,售价应定为答:为了赚取最大利润,售价应定为70元元54品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去例例3求函数求函数 在区间在区间2,6 上的上的最大值和最小值最大值和最小值例例4求函数求函数 的最大值的最大值55品质来自专业信赖源于诚信金太阳教育网金太阳教育网 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去

    注意事项

    本文(数学:1.3.1《函数的基本性质》课件ppt.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开