配方法解一元二次方程第一课时ppt课件.ppt
配方法解一元二次方程第一课时配方法解一元二次方程第一课时平方根2.如果,则=。1.如果,则就叫做的。3.如果,则=。(1).2=4(2).21=0对于方程(1),可以这样想:2=4根据平方根的定义可知:是4的().=即:=2这时,我们常用1、2来表示未知数为的一元二次方程的两个根。方程 2=4的两个根为1=2,2=2.平方根利用平方根的定义直接开平方求一元二利用平方根的定义直接开平方求一元二次方程的解的方法叫次方程的解的方法叫直接开平方法。直接开平方法。1、利用直接开平方法解下列方程:(1).2=25(2).2900=0解:(1)2=25直接开平方,得=51=5,2=5(2)移项,得2=900直接开平方,得=301=30 2=302、利用直接开平方法解下列方程:(1)(+1)24=0(2)12(2)29=01.直接开平方法的理论根据是平方根的定义平方根的定义2.用直接开平方法可解形如2 2=a(=a(a a0)或(a)2=b(b0)类的一元二次方程。3.方程2=a(a0)的解为:=方程(a)2=b(b0)的解为:=小结中的两类方程为什么要加条件:小结中的两类方程为什么要加条件:a0,b0a0,b0呢?呢?1解方程:解方程:3x2+27=0得(得().(A)x=3(B)x=-3(C)无实数根无实数根(D)方程的根有无数个方程的根有无数个2.方程方程(x-1)2=4的根是的根是().(A)3,-3(B)3,-1(C)2,-3(D)3,-2小练习小练习填一填填一填14它们之间有什么关系它们之间有什么关系?总结归律总结归律:对于对于x x2 2+px,+px,再添上一次项系数一再添上一次项系数一半的平方半的平方,就能配出一个含未知数的就能配出一个含未知数的一次式的完全平方式一次式的完全平方式.体现了从特殊到一般的数学思想方法体现了从特殊到一般的数学思想方法移项两边加上两边加上32,使左边配成使左边配成完全平方式完全平方式左边写成完全平方的形式左边写成完全平方的形式开平方开平方变成了变成了(x+h)2=k的形式的形式用配方法解一元二次方程的步骤用配方法解一元二次方程的步骤1、移到方程右边移到方程右边.2、将方程左边配成一个、将方程左边配成一个式。式。(两边两边都都加上加上)3、用、用解出原方程的解。解出原方程的解。常数项常数项完全平方完全平方一次项系数一半的平方一次项系数一半的平方直接开平方法直接开平方法例题讲解例题讲解例题例题1.用配方法解下列方程用配方法解下列方程 x2+6x-7=0练习1.用配方法解下列方程1.y2-5y-1=0.2.y2-3y=3 3.x2-4x+3=04.x2-4x+5=0例题讲解例题讲解例题例题2.用配方法解下列方程用配方法解下列方程 2x2+8x-5=0练习2.用配方法解下列方程1.5x2+2x-5=0 2.3y2-y-2=03.3y2-2y-1=0 4.2x2-x-1=0课堂练习课堂练习1.方程x2+6x-5=0的左边配成完全平方后所得方程为()(A)(x+3)2=14 (B)(x-3)2=14(C)(x+6)2=14 (D)以上答案都不对 2.用配方法解下列方程,配方有错的是()(A)x2-2x-99=0 化为(x-1)2=100 (B)2x2-3x-2=0 化为(x-3/4)2=25/16(C)x2+8x+9=0 化为(x+4)2=25 (D)3x2-4x=2 化为(x-2/3)2=10/9AC巩固练习如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分种花草,要使剩余部分面积为850m2,道路的宽应为多少?解:设道路的宽应为x米,则:化简,得:解之,得:答:道路宽1米3.若实数x、y满足(x+y+2)(x+y-1)=0,则x+y的值为()(A)1 (B)2 (C)2或1 (D)2或1 4.对于任意的实数x,代数式x25x10的值是一个()(A)非负数 (B)正数(C)整数 (D)不能确定的数 课堂练习课堂练习DB综合应用综合应用例题例题3.用配方法解决下列问题用配方法解决下列问题1.证明证明:代数式代数式x2+4x+5的值不小于的值不小于1.2.证明证明:代数式代数式-2y2+2y-1的值不大于的值不大于12用配方法解一元二次方程的用配方法解一元二次方程的步骤步骤:移项移项:把常数项移到方程的右边把常数项移到方程的右边;配方配方:方程两边都加上一次项系数方程两边都加上一次项系数一半的平方一半的平方;开方开方:根据平方根意义根据平方根意义,方程两边开平方方程两边开平方;求解求解:解一元一次方程解一元一次方程;定解定解:写出原方程的解写出原方程的解.