欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数值分析最佳平方逼近.ppt

    • 资源ID:91081295       资源大小:324.50KB        全文页数:20页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数值分析最佳平方逼近.ppt

    函数逼近主要讨论给定 ,求它的最佳逼近多项式的问题.最佳逼近最佳逼近 若 (次数不超过n次多项式),使误差则称 是 在 上的最佳逼近多项式最佳逼近多项式.若 则称相应的 为最佳逼近函数.通常将范数 取为 或1 若取 ,即(1.18)则称 是 在 上的最优一致逼近多项式最优一致逼近多项式.求 就是求 上使最大误差 最小的多项式.2 若取 ,即则称 是 在 上的最佳平方逼近多项式最佳平方逼近多项式.(1.19)若 是 上的一个列表函数,在 上给出 ,要求 使则称 为 的最小二乘拟合最小二乘拟合.(1.20)3 定义定义5 5(2.1)则称 与 在 上带权 正交正交.若上的权函数且满足为4 若函数族 满足关系 则称 是 上带权 的正交函数族正交函数族.若 ,则称之为标准正交函数族标准正交函数族.(2.2)三角函数族 就是在区间 上的正交函数族.5利用上述递推公式就可推出勒让德多项式勒让德多项式 P59-616切比雪夫多项式切比雪夫多项式 P61-64 P61-64 当权函数 ,区间为 时,由序列 正交化得到的正交多项式就是切比雪夫切比雪夫(Chebyshev)多项式多项式.它可表示为(2.10)若令 ,则7 最佳平方逼近及其计算最佳平方逼近及其计算 对 及 中的一个子集若存在 ,使(3.1)则称 是 在子集 中的最佳平方逼近最佳平方逼近函数函数.8 由(3.1)可知该问题等价于等价于求多元函数(3.2)的最小值.是关于 的多元函数,即 利用多元函数求极值的必要条件(3.1)9于是有(3.3)(3.3)式是关于 的线性方程组,称为法方程法方程.由于 线性无关,故于是方程组(3.3)有唯一解从而得到10此时 若取中求 次最佳平方逼近多项式则要在11 记(3.7)的解 即为所求.则 若用 表示 对应的矩阵,(3.6)称为希尔伯特希尔伯特(Hilbert)矩阵矩阵.12 例例 6 6 设 解解得方程组 求 上的一次最佳平方逼近多项式.利用(3.7),得(3.7)13解之 故 平方误差 最大误差 14 用正交函数族作最佳平方逼近用正交函数族作最佳平方逼近 设 若 是满足条件(2.2)的正交函数族,而 故法方程(3.3)的系数矩阵 则(3.3)(2.2)15 用 做基,求最佳平方逼近多项式,当n很大时,系数矩阵(3.6)是高度病态,因此直接求解法解方程是相当困难的,通常采用正交多项式做基.用正交函数组去平方逼近函数f(x).16 求 在 上用Legendre多项式作f(x)的三次最佳平方逼近多项式.例例7 7 解解先计算17由(3.14)得 代入(3.13)得三次最佳平方逼近多项式(3.14)(3.13)18最大误差 19练习:练习:20

    注意事项

    本文(数值分析最佳平方逼近.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开