机器学习与概率图模型中科院自动化所系列报告(王立威)25443.pptx
-
资源ID:91086018
资源大小:953.81KB
全文页数:122页
- 资源格式: PPTX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
机器学习与概率图模型中科院自动化所系列报告(王立威)25443.pptx
Machine Learning and Graphical Models王立威北京大学信息科学技术学院(Lecture I)Outline A brief overview of Machine Learning Graphical Models Representation Inference Learning2 Definition of Machine Learning:Learning from experiences.“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P,if its performance at tasks in T,as measured by P,improves with experience E.”-Tom Mitchell3“Classical”Machine Learning Tasks:Classification:spam filter,face recognition,Regression Hooks law,Keplers law,Ranking Search engine Probability(Distribution)Estimation4“Classical”Machine Learning Algorithms Classification SVM Boosting Random Forest Bagging(Deep)Neural Networks Regression Lasso Boosting5Support Vector Machines(SVMs)SVM:the large margin classifier SVM:hinge loss minimization+regularizationBoosting Boosting:(implicit)large margin classifier Boosting:exp loss minimization(+regularization)