原子结构和原子间的.ppt
C h a p t e r 2/Atomic Structure andInteratomic Bonding第2 章 原子结构和原子间的键n Why Study Atomic Structure and Interatomic Bonding?n An important reason to have an understanding of interatomic bonding in solids is that,in some instances,the type of bond allows us to explain a materials properties.n For example,consider carbon,which may exist as both graphite and diamond.Whereas graphite is relatively soft and has a greasy(滑腻)feel to it,diamond is the hardest known material.n This dramatic disparity in properties is directly attributable to a type of interatomic bonding found in graphite that does not exist in diamond(see Section 3.9).Learning Objectives After careful study of this chapter you should be able to do the following:n 3.(a)Schematically plot attractive,repulsive,and net energies versus interatomic separation for two atoms or ions.(b)Note on this plot the equilibrium separation and the bonding energy.n 4.(a)Briefly describe ionic,covalent,metallic,hydrogen,and van der Waals bonds.(b)Note what materials exhibit each of these bonding types.2.1 INTRODUCTIONn Some of the important properties of solid materials depend on geometrical atomic arrangements,and also the interactions that exist among constituent atoms or molecules.n This chapter,by way of preparation for subsequent discussions,considers several fundamental and important concepts,namely:atomic structure,electron configurations in atoms and the periodic table,n and the various types of primary and secondary interatomic bonds that hold together the atoms comprising a solid.These topics are reviewed briefly,under the assumption that some of the material is familiar to the reader.原子结构 ATOMIC STRUCTURE2.2 基本概念2.2 FUNDAMENTAL CONCEPTSn 每个原子是由很小的原子核和环绕原子核运动的电子构成,原子核由质子和中子构成。电子和质子均带电荷,电荷的大小为1.610-19C,质子带正电,电子带负电,中子是电中性的。这些亚原子粒子的质量极小,质子和中子质量差不多,为1.6710-27kg,远大于电子质量9.1110-31kg。n 每一个化学元素是由原子核中的质子数大小定义的,我们把它叫做原子序数(Z)。对于电中性即完整的原子,原子序数也等于核外电子数。原子序数为整数从最小的原子序数氢原子的1到自然界存在的最大的原子序数铀原子的92。n 每个原子的原子质量(A)可以用原子核里质子和中子质量的和来表示。虽然对于所有给定元素的质子数是相同的,但中子数(N)可以变化。因此有些元素的原子有两种或更多的的原子质量,这样的物质我们把它们叫做同位素。n 原子量是自然界现存的包括同位素在内的原子质量的平均值。原子质量单位(amu)可用于计算原子量。一个原子质量单位被定义为最普通的碳同位素12(A=12.00000)原子质量的1/12。用这样一个计量单位,质子和中子的质量略大于1。n A Z+N(2.1)n 元素的原子量或化合物的分子量可以用每个原子或分子的原子质量或每摩尔材料的质量来表示。一摩尔物质有6.0231023个原子或分子(阿弗加德罗常数)。这两种原子量之间的关系为如下方程:n 1amu/atom(or molecule)=1g/moln 例 如 铁 的 原 子 量 为 55.85amu/atom,或55.85g/mol。有 时 用 1amu/atom(or molecule)比较方便。有时用g/mol(或kg/mol)则更好。本书用的是后者。n 2.3 原子中的电子 n 2.3 ELECTRONS IN ATOMSn 原子模型 n ATOMIC MODELSn 19世纪末期,人们发现在涉及到固体材料中的电子的许多试验现象的时候,无法用经典力学解释。支撑原子和亚原子这个物质世界的运动规律的就是后来人们建立的一系列的称之为量子力学的原理和法则。了解原子和晶体中电子的行为必然涉及到一些量子力学概念的讨论。可是详细地解释量子力学原理已经超出了本教材的范围。这里只做一些肤浅的,简要的介绍。n 在量子力学的诞生初期,出现了简化的波尔原子模型,波尔原子模型假设电子在它们各自的固定轨道上围绕原子核运行,任何电子都或多或少的固定在各自的轨道上。该原子模型图2.1所示。n 量子力学的另外一个重要原理是电子的能量是量子化的,既能量值不连续,只能为某特定的值。电子的能量可以改变,能量改变时必须发生量子跃迁,要么到更高能级(吸收能量)要么到更低的能级(放出能量)。把电子能量与能级或能态联系起来考虑是方便的。这些能态不是连续改变的,即相邻的能级被一定能量隔开。例如,波尔氢原子的允许能态为图2.2a所示。这些能量都为负数,能量为零是非电子填充时的参比状态。当然,氢原子中的一个电子只能填充一个能级状态。n 因此、波尔模型代表了人们早期按照位置(电子轨道)和能量(量子化的能级)来描述原子中的电子的一种尝试。n 人们发现用波尔原子模型解释涉及电子的一些物理现象仍然具有局限性。后来通过波动力学原子模型成功解决了这一问题。在波动力学模型中,电子呈现波和粒子两像性。电子的运动不再固定在特定的轨道上,电子所在位置被认为是电子在原子核外各位置上出现的概率。换句话说,位置通过概率分布和电子云描述。图2.3 比较了波尔和波动力学的氢原子模型。本教材这两种理论都在使用,具体选择哪一种取决于用那一种更能够简单的说明问题。n 量子数 QUANTUM NUMBERSn 原子中的每个电子可以用波动力学中的四个参数即量子数描述。电子概率密度的大小,形状和空间取向均由该量子数中的三个量子数决定。而且波尔能级可以分裂成能级,量子数给出了每一个次能级层的数量。主量子数 n为 整 数,从 1开 始,分 别 可 以 取n=1,2,3,4,5,;有时这些能级也可以用字母K,L,M,N,O等分别表示n=1,2,3,4,5,时的状态,如表2.1所示。注意只有这个主量子数与波尔模型有联系。主量子数的大小与电子距核远近即位置有关,n愈大,能级愈高。n 第二个量子数l表示次能级,分别用小写字母s,p,d,f来表示次能级电子云的形状。此外,次能级上的次量子数要受到主量子数n大小的限制。表2.1分别列出了在几个主量子数下允许存在的次量子数。对于次能级的能态数由第三个量子数ml决定。处于s状态的电子,只有一个能级态,而对于p,d,f次能级上的电子,则分别有3,5,7种能级状态存在。n 电子除绕核运动外还有自旋运动,方向有向上或向下两种。第四个量子数自旋量子数ms用来确定电子的自旋方向,只能取12或12,每个值表示一种方向。n 因此,波尔模型被波动力学模型进一步精细化,波动力学引入了三个新量子数来描述每个能级的电子次能级态。图2.2a和2.2b是氢原子的这两种模型的比较。n 图2.4是用波动力学模型描述的一个完整的各主能级和次能级的能级图。图的几个特征值得注意。首先,主量子数越小,能级越低,例如,1s能级小于2s能级,2s能级小于3s能级。其次,在每个能级层,次能级层的能量随量子数l值的增大而增加,例如,3d能级高于3p能级,3p能级高于3s能级。最后一点,在相邻的能级之间还存在能级大小重叠的现象,特别是d和f能级态,例如,3d能级高于4s能级。n 电子构型n ELECTRON CONFIGURATIONSn 前面主要讨论了电子态-允许电子填充的能级。为了决定电子填充这些能态的方式,我们要应用另一量子力学概念-包利不相容原理。该原理说明每个电子能级态只能容纳不超过两个电子,且必须是自旋相反的。于是,s,p,d,f轨道可以分别容纳2,6,10和14个电子。表2.1总结了可以占据头4层轨道中每一层的最大电子数。n 当然,原子中不是所有的能级都填充满了电子。对大多数原子,电子只占据尽可能低的能级态和次能级态,每个能态只容纳两个自旋相反的电子。遵从能量最低原理从低到高填充,两个自旋方向相反的电子占据一个能态。图2.5说明了钠原子的能态结构。按照前述的限制,当所有电子占据了能量最低的状态,该原子叫做处于基态。可是,电子是可以跃迁到较高能态的,正如12章所讨论的。电子构型即原子结构表示这些能级被电子填充的方式。每个次能级上的电子数用次能级字母上标的数字表示。例如 氢、氦、钠 的 电 子 构 型 分 别 为:1s1,1s2,1s22s22p63s1。一些常见元素的电子构型列在表2.2中。n 考查原子的电子构型通常是很有用处的。首先,价电子是占据原子最外层轨道的电子。这些电子是极其重要的,因为它们参与成键形成原子和分子团。并且许多固体物质的物理和化学性质都与这些价电子有关。n 此外,一些原子具有称为“稳定的电子构型”结构;即最外电子层即价电子层是全充满的。如氖、氩、氪,通常最外电子层s,p轨道上总共有8个电子。氦是例外,它只有两个1s电子。这些元素(Ne,Ar,Kr,He)都是不活拨的,惰性的气体,实际上不参与化学反应。n 某些元素的原子通过失去或获得电子得到稳定的电子构型形成带电的离子,或与其他原子共用电子。这就是化学反应的基础,也是固体原子键的基础,正如节2.6所解释的。n 在特殊情况下s和p轨道结合形成杂化的spn轨道,这里n代表p轨道的数量,分别可以取1,2,3。周期表(图2.6)中3A,4A,和5A族元素最可能形成杂化轨道。形成杂化轨道的驱动力是由于这样做可以降低价电子的能量。对于碳元素,sp3杂化在有机和聚合物化学中具有很重要的意义。聚合物中可以发现(第四章)sp3杂化轨道的形状是四面体结构,每两条链的夹角为109o。2.4 周期表2.4THE PERIODIC TABLEn 元素周期表(图2.6)是按照电子构型对所有元素进行的分类排列。在这里元素按原子序数从小到大进行排列,共有7行每一行为一个周期。每一列或族上的元素具有相似的价电子结构,以及相似的化学和物理性质。在每个周期水平方向,这些性质呈现周期性的变化。n 位于最右边的0族元素是惰性气体,最外层填满了电子具有稳定的电子构型。7A,6A族是分别缺一个和两个电子就变为稳定结构的元素。7A族元素(F,Cl,Br,I和At)有时也叫卤素元素。碱和碱土金属(Li,Na,K,Be,Mg,Ca等)表为1A和2A族,分别有一个和两个多余的电子变为稳定结构。在三个长周期元素中,3B到2B族为过渡金属,部分填充了d电子。3A,4A,5A族(B,Si,Ge,As等)由于它们的价电子结构而呈现金属和非金属间的性质。n 从周期表注意到,许多元素属于金属。这些元素有时也叫电正性元素,它们容易失去外层较少的价电子变为正离子。而位于周期表右边的是电负性元素,它们容易获得电子变为负离子。有时它们也与其他原子共用电子。图2.7列出了按照元素周期表中的各元素电负性的值。电负性大小的一般规律是从左到右,从下到上增加。如果原子最外电子层的电子接近饱和,它们更容易接受电子,外层电子距离原子核越近,受到的“屏蔽”越小,接受电子的能力越强。n ATOMIC BONDING IN SOLIDS n 2.5 BONDING FORCES AND ENERGIESn An understanding of many of the physical properties of materials is predicated on a knowledge of the interatomic forces that bind the atoms together.n Perhaps the principles of atomic bonding are best illustrated by considering the interaction between two isolated(分离的)atoms as they are brought into close proximity(接近)from an infinite separation.n At large distances,the interactions are negligible;but as the atoms approach,each exerts forces on the other.These forces are of two types,attractive and repulsive,and the magnitude of each is a function of the separation or interatomic distance.n The origin of an attractive force FA depends on the particular type of bonding that exists between the two atoms.Its magnitude varies with the distance,as represented schematically in Figure 2.8a.n Ultimately最 后,the outer electron shells of the two atoms begin to overlap,and a strong repulsive force FR comes into play.The net force FN between the two atoms is just the sum of both attractive and repulsive components;that is,n FN=FA+FR(2.2)n which is also a function of the interatomic separation,as also plotted in Figure 2.8a.When FA and FR balance,or become equal,there is no net force;that is,FA+FR=0(2.3)n Then a state of equilibrium exists.The centers of the two atoms will remain separated by the equilibrium spacing r0,as indicated in Figure 2.8a.For many atoms,r0 is approximately 0.3 nm(3).n Once in this position,the two atoms will counteract(抵消)any attempt to separate them by an attractive force,or to push them together by a repulsive action.n Sometimes it is more convenient to work with the potential(势)energies between two atoms instead of forces.Mathematically,energy(E)and force(F)are related asn(2.4)Or,for atomic systems,(2.7)in which EN,EA,and ER are respectively the net,attractive,and repulsive energies for two isolated and adjacent atoms.n Figure 2.8b plots attractive,repulsive,and net potential energies as a function of interatomic separation for two atoms.The net curve,which is again the sum of the other two,has a potential energy trough or well around its minimum.n Here,the same equilibrium spacing,r0,corresponds to the separation distance at the minimum of the potential energy curve.n The bonding energy for these two atoms,E0,corresponds to the energy at this minimum point(also shown in Figure 2.8b);it represents the energy that would be required to separate these two atoms to an infinite separation.n Although the preceding treatment has dealt with an ideal situation involving only two atoms,a similar yet more complex condition exists for solid materials because force and energy interactions among many atoms must be considered.n Nevertheless,然 而 a bonding energy,analogous to E0 above,may be associated with each atom.The magnitude of this bonding energy and the shape of the energy versus-interatomic separation curve vary from material to material,and they both depend on the type of atomic bonding.n Furthermore,a number of material properties depend on E0,the curve shape,and bonding type.For example,materials having large bonding energies typically also have high melting temperatures;n at room temperature,solid substances are formed for large bonding energies,whereas for small energies the gaseous state is favored;liquids prevail when the energies are of intermediate magnitude.n In addition,as discussed in Section 7.3,the mechanical stiffness硬度(or modulus of elasticity)of a material is dependent on the shape of its force-versus-interatomic separation curve(Figure 7.7).n The slope for a relatively stiff material at the r=r0 position on the curve will be quite steep陡峭的;slopes are shallower for more flexible materials.n Furthermore,how much a material expands upon heating or contracts upon cooling(that is,its linear coefficient of thermal expansion)is related to the shape of its E0-versus-r0 curve(see Section 17.3).n A deep and narrow trough,槽形which typically occurs for materials having large bonding energies,normally correlates with a low coefficient of thermal expansion and relatively small dimensional alterations for changes in temperature.n Three different types of primary or chemical bond are found in solidsionic,covalent,and metallic.For each type,the bonding necessarily involves the valence electrons;furthermore,the nature of the bond depends on the electron structures of the constituent atoms.n In general,each of these three types of bonding arises from the tendency of the atoms to assume stable electron structures,like those of the inert gases,by completely filling the outermost electron shell.n Secondary or physical forces and energies are also found in many solid materials;they are weaker than the primary ones,but nonetheless虽然 如 此 influence the physical properties of some materials.The sections that follow explain the several kinds of primary and secondary interatomic bonds.n 2.6 PRIMARY INTERATOMIC BONDS n IONIC BONDINGn Perhaps ionic bonding is the easiest to describe and visualize想象.It is always found in compounds that are composed of both metallic and nonmetallic elements,elements that are situated at the horizontal水平的extremities of the periodic table.Atoms of a metallic element easily give up their valence electrons to the nonmetallic atoms.n In the process all the atoms acquire stable or inert gas configurations and,in addition,an electrical charge;that is,they become ions.n Sodium chloride(NaCl)is the classical ionic material.n A sodium atom can assume the electron structure of neon(and a net single positive charge)by a transfer of its one valence 3s electron to a chlorine atom.After such a transfer,the chlorine ion has a net negative charge and an electron configuration identical to that of argon.In sodium chloride,all the sodium and chlorine exist as ions.This type of bonding is illustrated schematically in Figure 2.9.n The attractive bonding forces are coulombic;that is,positive and negative ions,by virtue of their net electrical charge,attract one another.For two isolated ions,the attractive energy EA is a function of the interatomic distance according ton EA=-A/r(2.8)n An analogous equation for the repulsive energy isn ER=B/rn(2.9)n In these expressions,A,B,and n are constants whose values depend on the particular ionic system.The value of n is approximately 8.n Ionic bonding is termed nondirectional,that is,the magnitude of the bond is equal in all directions around an ion.It follows that for ionic materials to be stable,all positive ions must have as nearest neighbors negatively charged ions in a three dimensional scheme,and vice versa.The predominant主 要 的 bonding in ceramic materials is ionic.n Some of the ion arrangements for these materials are discussed in Chapter 3.n Bonding energies,which generally range between 600 and 1500 kJ/mol(3 and 8 eV/atom),are relatively large,as reflected in high melting temperatures.Table2.3 contains bonding energies and melting temperatures for several ionic materials.n Ionic materials are characteristically hard and brittle and,furthermore,electrically and thermally insulative.As discussed in subsequent chapters,these properties are a direct consequence of electron configurations and/or the nature of the ionic bond.n COVALENT BONDING n In covalent bonding stable electron configurations are assumed by the sharing of electrons between adjacent atoms.Two atoms that are covalently bonded will each contribute at least one electron to the bond,and the shared electrons may be considered to belong to both atoms.Covalent bonding is schematically illustrated in Figure 2.10 for a molecule of methane(CH4).n The carbon atom has four valence electrons,whereas each of the four hydrogen atoms has a single valence electron.Each hydrogen atom can acquire a helium electron configuration(two 1s valence electrons)when the carbon atom shares with it one electron.n The carbon now has four additional shared electrons,one from each hydrogen,for a total of eight valence electrons,and the electron structure of neon.The covalent bond is directional;that is,it is between specific atoms and may exist only in the direction between one atom and another that participates in the electron sharing.n Many nonmetallic elemental molecules(H2,Cl2,F2,etc.)as well as molecules containing dissimilar atoms,such as CH4,H2O,HNO3,and HF,are covalently bonded.n Furthermore,this type of bonding is found in elemental solids such as diamond(carbon),silicon,and germanium and other solid compounds composed of elements that are located on the right-hand side of the periodic table,such as gallium arsenide(GaAs),indium antimonide(InSb),and silicon carbide(SiC).n The number of covalent bonds that is possible for a particular atom is determined by the number of valence electrons.For N valence electrons,an atom can covalently bond with at most 8-N other atoms.For example,N=7 for chlorine,and 8-N=1,which means that one Cl atom can bond to only one other atom,as in Cl2.n Similarly,for carbon,N=4,and each carbon atom has 8-4,or four,electrons to share.Diamond is simply the three-dimensional interconnecting structure wherein each carbon atom covalently bonds with four other carbon atoms.This arrangement is represented in Figure 3.16.n Covalent bonds may be very strong,as in diamond,which is very hard and has a very high melting temperature,3550(6400F),or they may be very weak,as with bismuth,which melts at about 270(518F).Bonding energies and melting temperatures for a few coval