欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    信号与线性系统管致中第4章连续时间傅立叶变换ywk.pptx

    • 资源ID:91101723       资源大小:2.29MB        全文页数:68页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    信号与线性系统管致中第4章连续时间傅立叶变换ywk.pptx

    第4章 连续时间傅立叶变换The Continuous time Fourier Transform本章的主要内容:1.连续时间傅立叶变换;2.傅立叶级数与傅立叶变换之间的关系;3.傅立叶变换的性质;4.系统的频率响应及系统的频域分析;在工程应用中有相当广泛的信号是非周期信号,对非周期信号应该如何进行分解,什么是非周期信号的频谱表示,线性时不变系统对非周期信号的响应如何求得,就是这一章要解决的问题。4.0 引言 Introduction 在时域可以看到,如果一个周期信号的周期趋于无穷大,则周期信号将演变成一个非周期信号;反过来,如果将任何非周期信号进行周期性延拓,就一定能形成一个周期信号。我们把非周期信号看成是周期信号在周期趋于无穷大时的极限,从而考查连续时间傅立叶级数在 T趋于无穷大时的变化,就应该能够得到对非周期信号的频域表示方法。4.1 非周期信号的表示连续时间傅立叶变换Representation of Aperiodic Signals:The Continuous-Time Fourier Transform一.从傅立叶级数到傅立叶变换 我们已经看到,周期性矩形脉冲,当周期 增大时,频谱的幅度随 的增大而下降;谱线间隔随 的增大而减小;但频谱的包络不变。再次考察周期性矩形脉冲的频谱图:当 时,周期性矩形脉冲信号将演变成为非周期的单个矩形脉冲信号。(a)(b)(a)(b)00 由于 也随 增大而减小,并最终趋于0,考查 的变化,它在 时应该是有限的。于是,我们推断出:当 时,离散的频谱将演变为连续的频谱。由当 时,如果令 则有与周期信号傅立叶级数对比有:这表明:周期信号的频谱就是与它相对应的非周期信号频谱的样本。根据傅立叶级数表示:连续时间傅立叶变换当 时,于是有:傅立叶反变换 此式表明,非周期信号可以分解成无数多个频率连续分布、振幅为 的复指数信号之和。由于 具有频谱随频率分布的物理含义,因而称 为频谱密度函数。于是,我们得到了对非周期信号的频域描述方法这一对关系被称为连续时间傅立叶变换对。可见,周期信号的频谱是对应的非周期信号频谱的样本;而非周期信号的频谱是对应的周期信号频谱的包络。既然傅立叶变换的引出是从周期信号的傅立叶级数表示出发,讨论周期趋于无穷大时的极限得来的,傅立叶变换的收敛问题就应该和傅立叶级数的收敛相一致。二.傅立叶变换的收敛这表明能量有限的信号其傅立叶变换一定存在。2.Dirichlet 条件a.绝对可积条件1.若则 存在。也有相应的两组条件:b.在任何有限区间内,只有有限个极值点,且极值有限。c.在任何有限区间内,只有有限个第一类间断点。应该指出:这些条件只是傅立叶变换存在的充分条件。和周期信号的情况一样,当 的傅立叶变换存在时,其傅立叶变换在 的连续处收敛于信号本身,在间断点处收敛于左右极限的平均值,在间断点附近会产生Gibbs 现象。这两组条件并不等价。例如:是平方可积的,但是并不绝对可积。三.常用信号的傅立叶变换:1.0102.结论:实偶信号的傅立叶变换是实偶函数。此时可以用一幅图表示信号的频谱。对此例有103.0 这表明 中包括了所有的频率成分,且所有频率分量的幅度、相位都相同。因此,系统的单位冲激响应 才能完全描述一个LTI系统的特性,才在信号与系统分析中具有如此重要的意义。01 显然,将 中的 代之以 再乘以,即是相应周期信号的频谱4.矩形脉冲:101000不同脉冲宽度对频谱的影响可见,信号在时域和频域之间有一种相反的关系。(称为理想低通滤波器)与矩形脉冲情况对比,可以发现信号在时域和频域之间存在一种对偶关系。5.1,0,100对偶关系可表示如下:101000 同时可以看到,信号在时域和频域之间也有一种相反的关系。即信号在时域脉冲越窄,则其频谱主瓣越宽,反之亦然。对例5.我们可以想到,如果,则 将趋于一个冲激。6.若 则有因为所以四.信号的带宽(Bandwidth of Signals):由信号的频谱可以看出:信号的主要能量总是集中于低频分量。另一方面,传输信号的系统都具有自己的频率特性。因而,工程中在传输信号时,没有必要一定要把信号的所有频率分量都有效传输,而只要保证将占据信号能量主要部分的频率分量有效传输即可。为此,需要对信号定义带宽。通常有如下定义带宽的方法:2.对包络是 形状的频谱,通常定义主瓣宽度(即频谱第一个零点内的范围)为信号带宽。下降到最大值的 时对应的频率范围,此时带内信号分量占有信号总能量的1/2。1.以矩形脉冲为例,按带宽的定义,可以得出,脉宽乘以带宽等于常数C(脉宽带宽积)。这清楚地反映了频域和时域的相反关系。4.2 周期信号的傅立叶变换 到此为止,我们对周期信号用傅立叶级数表示,非周期信号用傅立叶变换表示。因为数学描述方法的不一致,在某些情况下,会给我们带来不便。但由于周期信号不满足 Dirichlet 条件,因而不能直接从定义出发,建立其傅立叶变换表示。The Fourier Transformation of Periodic Signals所对应的信号考查 这表明周期性复指数信号的频谱是一个冲激。于是当把周期信号表示为傅立叶级数时,因为就有周期信号的傅立叶变换表示若 则 这表明:周期信号的傅立叶变换由一系列冲激组成,每一个冲激分别位于信号的各次谐波的频率处,其冲激强度正比于对应的傅立叶级数的系数。例1:例2:例3:均匀冲激串010例4.周期性矩形脉冲014.3 连续时间傅立叶变换的性质 讨论傅立叶变换的性质,旨在通过这些性质揭示信号时域特性与频域特性之间的关系,同时掌握和运用这些性质可以简化傅立叶变换对的求取。1.线性:Linearity则Properties of the Continuous-Time Fourier Transform若2.时移:Time Shifting这表明信号的时移只影响它的相频特性,其相频特性会增加一个线性相移。则 若3.共轭对称性:Conjugate and Symmetry 若 则所以即 若 是实信号,则于是有:由 可得即实部是偶函数虚部是奇函数 若则可得出即:模是偶函数,相位是奇函数 若则可得 如果 即信号是偶函数。则表明:实偶信号的傅立叶变换是偶函数。表明 是实函数。若 即信号是奇函数,同样可以得出:所以又因为表明 是奇函数表明 是虚函数 若 则有:例:的频谱:101/20-1/21/20将 分解为偶部和奇部有4.时域微分与积分:Differentiation and Integration(可将微分运算转变为代数运算)(将 两边对 微分即得该性质)由时域积分特性从也可得到:(时域积分特性)则若5.时域和频域的尺度变换:Scaling当 时,有 尺度变换特性表明:信号如果在时域扩展 a 倍,则其带宽相应压缩 a 倍,反之亦然。这就从理论上证明了时域与频域的相反关系,也证明了信号的脉宽带宽积等于常数的结论。则若时域中的压缩(扩展)对应频域中的扩展(压缩)6.对偶性:Duality若 则证明:也可由 得到证明。根据 得这就是移频特性例如:由 有对偶关系利用时移特性有再次对偶有由对偶性可以方便地将时域的某些特性对偶到频域由得所以频域微分特性该特性也可由对偶性从时域微分特性得出:由有利用时域微分特性有对再次对偶得频域微分特性由时域积分特性,可对偶出频域积分特性利用时域积分特性再次对偶由 有频域积分特性7.Parseval定理:若 则 这表明:信号的能量既可以在时域求得,也可以在频域求得。由于 表示了信号能量在频域的分布,因而称其为“能量谱密度”函数。4.4 卷积性质 The Convolution Property一.卷积特性:由于卷积特性的存在,使对LTI系统在频域进行分析成为可能。本质上,卷积特性的成立正是因为复指数信号是一切LTI系统的特征函数。则若由表明:故有可将 分解成复指数分量的线性组合,每个 通过LTI系统时都要受到系统与 对应的特征值的加权。这个特征值就是所以 由于 的傅氏变换 就是频率为 的复指数信号 通过LTI系统时,系统对输入信号在幅度上产生的影响,所以称为系统的频率响应。鉴于 与 是一一对应的,因而LTI系统可以由其频率响应完全表征。由于并非任何系统的频率响应 都存在,因此用频率响应表征系统时,一般都限于对稳定系统。因为,稳定性保证了二.LTI系统的频域分析法:根据卷积特性,可以对LTI系统进行频域分析,其过程为:1.由2.根据系统的描述,求出3.4.4.5 相乘性质 The Multiplication Property利用对偶性可以从卷积性质得出相乘性质若则 两个信号在时域相乘,可以看成是由一个信号控制另一个信号的幅度,这就是幅度调制。其中一个信号称为载波,另一个是调制信号。例1:移频性质例2.正弦幅度调制:1001/2 正弦幅度调制等效于在频域将调制信号的频谱搬移到载频位置。例3.同步解调:1/21/4 1/4 此时,用一个频率特性为的系统即可从 恢复出。20只要 即可。具有此频率特性的LTI系统称为理想低通滤波器。例4.中心频率可变的带通滤波器:A1理想低通的频率响应1等效带通滤波器 相当于从 中直接用一个带通滤波器滤出的频谱。表明整个系统相当于一个中心频率为 的带通滤波器,改变 即可实现中心频率可变。4.6 傅立叶变换的性质与傅立叶变换对列表(自学)工程实际中有相当广泛的LTI系统其输入输出关系可以由一个线性常系数微分方程描述。一般形式的LCCDE是:4.7 由线性常系数微分方程表征的系统一.由LCCDE描述的LTI系统的频率特性:Systems Characterized by Linear Constant-Coefficient Differential Equations 由于 是一切LTI系统的特征函数,因此,当 系统的输入为 时,系统所产生的响应就是。表明在 的情况下,求解LCCDE即可得到。但是这种方法太麻烦,很少使用。对LCCDE两边进行傅立叶变换有:由于 可见由LCCDE描述的LTI 系统其频率特性是一个有理函数。由此可以看出,对由 LCCDE 描述的LTI系统,当需要求得其 时(比如时域分析时),往往是由 做反变换得到。对有理函数求傅立叶反变换通常采用部分分式展开和利用常用变换对进行。二.频率响应的求法:1.用微分方程表征的系统例:可见,对由微分方程所描述的系统通过求频率响应可以方便地求出其单位冲激响应。2.以方框图描述的系统例:3.互联系统的*级联:*并联:H1(j)H2(j)H1(j)H2(j)*反馈联结:1.通过连续时间傅立叶变换,建立了将连续时间信号(包括周期、非周期信号)分解为复指数信号分量的线性组合的方法。2.通过讨论傅立叶变换的性质,揭示了信号时域特性与频域特性的关系。卷积特性是LTI系统频域分析方法的理论基础,相乘特性则是通信和信号传输领域各种调制解调技术的理论基础。4.8 小结 Summary 3.对LTI系统建立了频域分析的方法。5.稳定的LTI系统可以通过其频率响应来描述。4.对由LCCDE描述的LTI系统,可以很方便地由LCCDE或系统框图得到其。6.建立了系统互联时,系统频率响应与各子系统频率响应的关系。

    注意事项

    本文(信号与线性系统管致中第4章连续时间傅立叶变换ywk.pptx)为本站会员(jix****n11)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开