2023年北师大版七年级下册数学分章节复习最全面精品资料.pdf
北师大版七年级下册数学分章节复习资料 作业练习(复习备用资料)第一章 整式 考点分析:本章的内容以计算为主,故大部分的分值落在计算题,属于基础题,同学们要必拿哦!占 1520 分左右 一、整式的有关概念 1、单项式:数与字母乘积,这样的代数式叫单项式。单独一个数或字母也就是单项式。2、单项式的系数:单项式中的数字因数。3、单项式的次数:单项式中所有的字母的指数与。4、多项式:几个单项式的与叫多项式。5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数 叫多项式的次数。6、整式:单项式与多项式统称整式。(分母含有字母的代数式不就是整式)练习一:(1)指出下列单项式的系数与指数各就是多少。a)1(2)指出下列多项式的次数及项。二、整式的运算(一)整式的加减法:基本步骤:去括号,合并同类项。(二)整式的乘法 1、同底数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:练习二:判断下列各式就是否正确。432)2(yxmn32)3(r32)4(252)1(523nmyx4232372)2(abzyxnmnmaaa ,_)()()()(4_,2)3_,)2_,2)16623222844333改正:改正:改正:改正:xxxxxmmmbbbaaa北师大版七年级下册数学分章节复习资料 2、幂的乘方 法则:幂的乘方,底数不变,指数相乘。数学符号表示:练习三:判断下列各式就是否正确。3、积的乘方 法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)符号表示:练习四:计算下列各式。4、同底数的幂相除 法则:同底数的幂相除,底数不变,指数相减。数学符号表示:特别地:练习五:(1)判断正误(2)计算(3)用分数或者小数表示下列各数 _105.1)3_;_3)2_;_21)14305、单项式乘以单项式 法则:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余的字母则连同它的指数不变,作为积的一个因式。练习六:计算下列各式。6、单项式乘以多项式 法则:单项式乘以多项式,就就是根据分配律用单项式的去乘多项式的每一项,再把所得的积mnnmaa)(_)()()(4_,)(3_)(2_,)(12244241222443243284444改正:改正:改正:改正:mmmnnaaaxxbbbaaa)()(),(,)(为正整数其中为正整数其中ncbaabcnbaabnnnnnnn32332324)()4,)2()3,)21()2,)2)(1baxybaxyznmnmaaa)0(1),0(10aapaaapp为正整数 _)()(4_,1)54)(3_,2010)2_,)12350223636改正:改正:改正:改正:mmmaaaanmnmmmnnmmaaxxxaa)6),()(5,2)2)(455)3662;)1222213112511))31()43()32)(4(),()(3()4()3)(2(),2()5)(1(25322323223cabcbcababababyxxnm北师大版七年级下册数学分章节复习资料 相加。7、多项式乘以多项式 法则:多项式乘以多项式,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。练习七:(1)计算下列各式。(2)计算下图中阴影部分的面积 8、平方差公式 法则:两数的各乘以这两数的差,等于这两数的平方差。数学符号表示:9、完全平方公式 法则:两数与(或差)的平方,等于这两数的平方与再加上(或减去)这两数积的 2 倍。数学符号表示:练习八:(1)判断下列式子就是否正确,并改正(2)计算下列式。10、整式的除法 1、单项式除以单项式 法则:单项式除以单项式,把它们的系数、相同字母的幂分别相除后,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。2、多项式除以单项式 法则:多项式除以单项式,就就是多项式的每一项去除单项式,再把所得的商相加。练习九:计算下列各题。第二章平行线与相交线)212)()(3()2)(1()3)(2)(2(),32()2)(1(yxyxyxyxcyxa.,)(22也可以是代数式既可以是数其中babababa.,2)(;2)(222222也可以是代数式既可以是数其中bababababababa _.,)4(_,141)121)(3(_,254)52)(2(_,2)2)(2)(1(2222222改正:只能表示一切有理数还是完全平方公式无论是平方差公式改正:改正:改正:baxxxbabayxyxyx97103)5(19992001)5(,9.199)4)73)(73)(3(27)2()6)(6)(1(2222yxyxabyxyxbabacacba)(31)(6)2()2()41)(1(25346北师大版七年级下册数学分章节复习资料 考点分析:本章的内容考题涉及到填空选择,说理题会有一道!但不难,会结合第五章的内容考核;分值1015分 一、知识网络图:二、知识梳理:(一)角的大小关系:余角、补角、对顶角的定义与性质:1.余角的定义:如果两个角的与就是直角,那么称这两个角互为余角.2.补角的定义:如果两个角的与就是平角,那么称这两个角互为补角.3.对顶角的定义:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:1 2=90,则1、2 互余.反过来,若1,2 互余.则1+2=90.同角或等角的余角相等,如果l 十2=90,1+3=90,则 2=3.5.互为补角的有关性质:若A+B=180则A、B互补,反过来,若A、B互补,则A+B180.同角或等角的补角相等.如果A C=18 0,A+B=18 0,则B=C.6.对顶角的性质:对顶角相等.(二)两直线平行的判别与性质:余角、补角、对顶角 探索直线平行的条件 探索直线平行的特征 作一条线段等于已知线段;作一个角等于已知角 相交线与平行相交线 平行线 尺规作图 同位角 内错角 同旁内角 同位角 内错角 同旁内角 北师大版七年级下册数学分章节复习资料 1.同一平面内两条直线的位置关系就是:相交或平行.2.“三线八角”的识别:三线八角指的就是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”与“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的判别:(1)平行线的定义:在同一平面内,不相交的两条直线就是平行线.(2)如果两条直线都与第三条直线平行,那么.这两条直线互相平行.(3)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。(4)两条直线被第三条直线所截,如果内错角相等.那么这两条直线平行。(5)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.备注:其中(3)、(4)、(5)这三种方法都就是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键就是能否正确地找到或识别出同位角,内错角或同旁内角.4.平行线的性质:(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。5.两个几何中最基本的尺规作图:作一条线段等于已知线段与作一个角等于已知角。尺规作线段与角 1、在几何里,只用没有刻度的直尺与圆规作图称为尺规作图。2、尺规作图就是最基本、最常见的作图方法,通常叫基本作图。做法:例 作一条线段等于已知线段 例 作一个角等于已知角 三.基础练习 1、观察右图并填空:北师大版七年级下册数学分章节复习资料(1)1 与 就是同位角;(2)5 与 就是同旁内角;(3)1 与 就是内错角;2、当图中各角满足下列条件时,您能指出哪两条直线平行?(1)1=4;(2)2=4;(3)1+3=180;3、如图:1=1002=80,3=105 则4=_ 4、两条直线被第三条直线所截,则()A 同位角相等 B 同旁内角互补 C 内错角相等 D 以上都不对 5、如图,若3=4,则 ;若 ABCD,则 =。三、典型例题分析:【例 1】已知:A=30,则A的补角就是_度.解:150 点拨:此题考查了互为补角的性质.【例 2】如图 l,直线 AB,CD相交于点 O,OEAB于点 O,OF平分 AOE,11530,则下列结论中不正确的就是()图 1 北师大版七年级下册数学分章节复习资料 A.2=45 B.1=3 图 2 北师大版七年级下册数学分章节复习资料 C.AOD与1 互为补角 D.1 的余角等于 7530 解:D 点拨:此题考查了互为余角,互为补角与对顶角之间的综合运用知识.【例 3】如图 2,直线 a b,则A CB _ 解:78 点拨:过点 C作 CD平行于 a,因为 ab,所以 CDb.则A C D 2 8,DCB=5 0.所以ACB 78.【例 4】如图 3,ABCD,直线 EF分别交 A B、CD于点 E、F,EG平分 北师大版七年级下册数学分章节复习资料 B EF,交 CD于点 G,1=5 0 求,2 的度数.图 3 北师大版七年级下册数学分章节复习资料 解:65 点拨:由 ABCD,得 BEF 1801=130,BEG=2.又因为 EG平分BEF,所以2=BEG=12 BEF=65(根据平行线的性质)【例 5】一学员在广场上练习驾驶汽车,若其两次拐弯后仍沿原方向前进,则两次拐弯的角度可能就是()A.第一次向左拐 30,第二次向右拐 30 B.第一次向右拐 30,第二次向左拐 130 C.第一次向右拐 50,第二次向右拐 130 D.第一次向左拐 50.第二次向左拐 130 解:A 点拨:本题创设了一个真实的问题。要使经过两次拐弯后.汽车行驶的方向与原来的方向相同.就得保证原来,现在的行驶方向就是两条平行线且方向一致.本题旨在考查平行线的判定与空间观念。解题时可根据选项中两次拐弯的角度画出汽车行驶的方向,再判定其就是否相同,应选 A.【例 6】如图 4,已知 B DAC,EF AC,D、F为垂足,G 就是 AB上一点,且l=2.求证:AGD=ABC.北师大版七年级下册数学分章节复习资料 证明:因为 BDAC,EF AC.所以 BDEF.所以3=1.因为1=2,所以2=3.所以 GD图 4 北师大版七年级下册数学分章节复习资料 BC.所以AGD=ABC.点拨:审题时,根据分析,只瞧相关线段组成的图形而不考虑其她部分,这样就 能避免图形的其她部分干扰思路.第三章 变量之间的关系 考点分析:本章的内容不会太难,以填空选择考核为主,偶有实际问题的解决(即应用题)!占510分值;表示变量间关系的三大方法:一、列表法。采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法最大的特点就是直观,可以直接从表中找出自变量与因变量的对应值,但缺点就是具有局限性,只能表示因变量的一部分。例 在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素。据临床观察:如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量(微克)与时间(分钟)之间的关系近似地满足下表:时间(分钟)0 20 40 60 80 100 120 140 160 180 200 220 240 260 含药量(微克)0 2 4 6 5、7 5、2 4、8 4、4 4 3、6 3、2 2、8 2、4 2(1)上表反映了哪两个变量之间的关系?哪个就是自变量?哪个就是因变量?(2)当注射药液 60 分钟后血液中含药量就是多少?北师大版七年级下册数学分章节复习资料(3)据临床观察:每毫升血液中含药量不少于 4 微克时,控制“非典”病情就是有效的。如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?二、关系式法。关系式就是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以根据已知因变量的值求出相应的自变量的值。例 已知梯形上底的长就是 x,下底的长就是 15,高就是 8,梯形面积为 y。(1)梯形面积 y 与上底长 x 之间的关系式就是什么?(2)用表格表示当 x 从 10 变到 20 时(每次增加 1),y 的相应值;(3)当 x 每增加 1 时,y 如何变化?说说您的理由;(4)当 x 0 时,y 等于什么?此时它表示的什么?三、图象法。图象法就是用图象来表示两个变量之间的关系,通常用横轴上的点表示自变量,用纵轴上的点表示因变量,用坐标表示每对自变量与因变量的对应值所在位置。图象法的特点就是形象直观,可以形象地反映出变量之间关系的变化趋势与某些性质,但就是根据图象往往难以得到准确的对应值。要从图象中获取信息,必须结合具体情境理解图象上点的意义,一要瞧横轴、纵轴分别表示哪个变量,二要瞧该点所在的水平方向、竖直方向的位置。汽车的“路程-时间”图像 1表示汽车由静止均速向前走 2表示汽车停止运动 速度 时间 1 2 3 汽车的“速度-时间”图像 1表示汽车由静止均加速运动 2表示汽车保持一定的速度运动 路程 时间 1 2 3 北师大版七年级下册数学分章节复习资料 3表示汽车均速往回走,回到起点。练习一:1、汽车速度与行驶时间之间的关系可以用图象来表示,下图中 A、B、C、D四个图象,可以分别用一句话来描述:(1)在某段时间里,速度先越来越快,接着越来越慢()(2)在某段时间里,汽车速度始终保持不变。()(3)在某段时间里,汽车速度越来越快。()(4)在某段时间里,汽车速度越来越慢。()例 如图就是某天温度变化的情况。(1)上午 9 时的温度就是多少?12 时呢?(2)这一天的最高温度就是多少?就是在几时达到的?最低温度呢?(3)这一天的温差就是多少?从最低温度到最高温度经过了多长时间?北师大版七年级下册数学分章节复习资料(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中 A点表示的就是什么?B点呢?一、变量、自变量、因变量 1、在某一变化过程中,不断变化的量叫做变量。2、如果一个变量 y 随另一个变量 x 的变化而变化,则把 x 叫做自变量,y 叫做因变量。二、图像注意:a、认真理解图象的含义,注意选择一个能反映题意的图象;b、从横轴与纵轴的实际意义理解图象上特殊点的含义(坐标),特别就是图像的起点、拐点、交点。三、事物变化趋势的描述 对事物变化趋势的描述一般有两种:1、随着自变量 x 的逐渐增加(大),因变量 y 逐渐增加(大)(或者用函数语言描述也可:因变量 y 随着自变量 x 的增加(大)而增加(大);2、随着自变量 x 的逐渐增加(大),因变量 y 逐渐减小(或者用函数语言描述也可:因变量 y 随着自变量 x 的增加(大)而减小)、注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述、例如在什么范围内随着自变量 x 的逐渐增加(大),因变量 y 逐渐增加(大)等等、四、估计(或者估算)对事物的估计(或者估算)有三种:1、利用事物的变化规律进行估计(或者估算)、例如:自变量 x 每增加一定量,因变量 y 的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数首数)/次数或相差年数)等等;北师大版七年级下册数学分章节复习资料 2、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量 y 的值;3、利用关系式:首先求出关系式,然后直接代入求值即可、北师大版七年级下册数学分章节复习资料 ABCDE1第四章、三角形 考点分析:本册书的考核重点涉及到填空、选择、说理题;说明两个三角形全等为必考;占1520分值。一、三角形的性质(1)边上的性质:三角形的任意两边之与大于第三边 三角形的任意两边之差小于第三边(2)角上的性质:三角形三内角与等于 180 度*另外:三角形的一个外角等于与它不相邻的两个内角之与,即ACD=A+B 练习一:1、下列每组分别就是三根小木棒的长度,用它们能摆成三角形不?(单位:厘米。填“能”或“不能”)3,4,5()8,7,15()13,12,20()5,5,11()2、在ABC,AB 5,BC9,那么 AC _ 3、一个三角形的两边长分别就是 3 与 8,而第三边长为奇数,那么第三边长就是 _ 4、已知一个等腰三角形的一边就是 3cm,一边就是 7cm,这个三角形的周长就是 _ (第 6 题)(第 7 题)5、如上图,1=60,D=20,则A=度 6、如上图,ADBC,1=40,2=30,则B=度,C=度 北师大版七年级下册数学分章节复习资料 第 1 题 第 2 题 第 3 题 二、三角形的中线、角平分线、高线、中垂线的概念 1、中线:线段 AE就是三角形 BC边上的中线 _ 2、角平分线 线段 AD就是三角形BAC的角平分线、_ 3、高线 线段 AD就是 BC边上的高 _ 4、垂直平分线 1)_ 直线DE就是BC边上的中垂线 2)_ 练习二:1、如图,在ABC中,BE 就是边 AC上的中线。已知 AB=4,AC=3,BE=5,则:AE=_ ABE的周长=_、2、如图,CE,CF 分别就是ABC的内角平分线与外角平分线,则ECF的度数=_度、3、如图,AD、BF都就是ABC的高线,若CAD=30 度,则CBF=_ 度。三、三角形全等的判定方法(1)边边边公理(SSS):三边对应相等的两个三角形全等(2)边角边公理(SAS):两边及它们的夹角对应相等的两个三角形全等(3)角边角公理(ASA):两角及它们的夹边对应相等的两个三角形全等(4)角角边公理(AAS):两角及其中一角的对边对应相等的两个三角形全等(5)斜边、直角边公理(HL,只适用于直角三角形)斜边与一条直角边对应相等的两个直角三角形全等。北师大版七年级下册数学分章节复习资料 练习三:1 如图,已知 AC 平分BCD,要说明ABC ADC,还需要增加一个什么条件?请说明理由。2、如图 AD=BC,要判定ABCCDA,还需要的条件就是 ,并说明理由。3、如图,已知 AB=ED,AF=CD,EF=BC,说明EFD=BCA的理由。4、能力提升:如图:AC与 DB相交于点 O,若 AB=DC,AC=DB,则B=C,请说明理由、例 如图所示,在ABC中,ABAC,D就是 BC的中点,点 E在 AD上,则图中的全等三角形共有()A、1 对 B、2 对 C、3 对 D、4 对 例 根据下列各组条件,能判定ABC ABC的就是()A、ABAB,BCBC,AA B、AA,CC,ACAC C、ABAB,SABCSABC D、AA,BB,CC 例 如图所示,OAOB,OCOD,O60,C25,则BED等于_.例 已知:如图所示,A、B、C、D 在同一直线上,ADBC,AE BF,CE DF,试说明:(1)DFCE;(2)DE CF.北师大版七年级下册数学分章节复习资料 ABCDEF12 四、角平分线的性质:角平分线上的任意一点到这个角两边的距离相等 如图,若点 P就是CAB的平分线上一点,并且 PBAB,PCAC,则有 _ 书写格式:点 P就是CAB的平分线上一点,PBAB,PCAC,PC=PB 练习四:如图,在ABC中,AD就是BAC的角平分线,DE就是ABD的高线,C=90 度。若DE=2,BD=3,求线段 BC的长。五、线段中垂线的性质、线段垂直平分线的性质:线段的垂直平分线上的点到线段两端点的距离相等。几何表述:练习五:如下图,EF就是 AB的中垂线,分别延长BE、AE至D,C,使DE=CE,则AD与BC相等不?请说明理由。六、作三角形 (尺规作线段与角)第五章、生活中的轴对称 考点分析:内容相对简单,主要就是让学生感受生活中的轴对称,能够根据轴对称现象解决一些简单的题目!但结合三角全等的内容来考核的话,就会有一定的深度;这里特别提醒同学们要注意的就是:简单的轴对称图形的一些性质,希望大家要记住!占 510分。北师大版七年级下册数学分章节复习资料 一、轴对称图形 如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。性质一:角平分线上的任意一点到这个角两边的距离相等 性质二:线段的垂直平分线上的点到线段两端点的距离相等。性质三:等腰三角形时轴对称图形,它的角平分线、底边上的高、底边上的中线重合(简称“三线合一”),它们所在的直线都就是等腰三角形的对称轴。性质四:等腰三角形的来那个底角相等;性质五:如果一个三角形有两个角相等,那么它们所对的边也相等。其她性质:轴对称的两个图形的对应点所连的线段被对称轴垂直平分;它们的对应线段相等,对应角相等。例 下列图形中,就是轴对称图形的有()A、1 个 B、2 个 C、3 个 D、4 个 例 如图,把一个正方形三次对折后沿虚线剪下,得到的图形就是()二、成轴对称 对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就就是对称轴。可以说成:这两个图形关于某条直线对称。三、角平分线的性质 1、角平分线所在的直线就是该角的对称轴。2、性质:角平分线上的点到这个角的两边的距离相等。3、尺规作图:作一个角的角平分线。四、线段的垂直平分线 右下方折 上折 右折 沿虚线剪开 A B C D 北师大版七年级下册数学分章节复习资料 1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。3、尺规作图:作一条线段的垂直平分线。例 如图,已知 DE就是 AC的垂直平分线,AB=10cm,BC=11cm,则 ABD 的周长为 cm。五、等腰三角形 1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也就是等腰三角形。5、等腰三角形就是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都就是它的对称轴。6、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。7、等腰三角形的两个底角相等,简写成“等边对等角”。六、等边三角形 1、等边三角形就是指三边都相等的三角形,又称正三角形 2、等边三角形有三条对称轴,三角形的高、角平分线与中线所在的直线都就是它的对称轴。3、等边三角形的三边都相等,三个内角都就是 600。A E D C B 北师大版七年级下册数学分章节复习资料 例 下列图形中,就是轴对称图形的有()个、角;线段;等腰三角形;等边三角形;三角形、A、1 个 B、2 个 C、3 个 D、4 个 七、轴对称的性质 1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形就是全等图形。3、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。4、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。八、镜面对称 1、当物体正对镜面摆放时,镜面会改变它的左右方向;2、当垂直于镜面摆放时,镜面会改变它的上下方向;3、如果就是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;例 一辆汽车的牌照在车下方水坑中的像如图所示,则这辆汽车的牌照号码应为 、练习一(能力提升):1、如图,已知:ABC中,BCAC,AB边上的垂直平分线 DE交 AB于 D,交AC于 E,AC=9 cm,BCE的周长为 15 cm,求 BC的长、2、如图,已知 P 点就是AOB平分线上一点,PCOA,PDOB,垂足为 C、D,(1)PCD=PDC不?为什么?(2)OP 就是 CD的垂直平分线不?为什么?第六章 概率 考点分析:本章内容以填空选择为主,偶尔出现在大题;占5-15分值;C P O D B A 北师大版七年级下册数学分章节复习资料 要求:会判定三类事件(必然事件、不可能事件、不确定事件)及三类事件发生可能性的大 一、事件:1、事件分为必然事件、不可能事件、不确定事件。2、必然事件:肯定会发生的事件。也就就是指该事件每次一定发生,不可能不发生,即发生的可能就是 100%(或 1)。3、不可能事件:事先就能肯定一定不会发生的事件。也就就是指该事件每次都完全没有机会发生,即发生的可能性为零。4、不确定事件:事先无法肯定会不会发生的事件,也就就是说该事件可能发生,也可能不发生,即发生的可能性在0 与 1 之间。例 给出下列结论:打开电视机它正在播广告的可能性大于不播广告的可能性 小明上次的体育测试就是“优秀”,这次测试它百分之百的为“优秀”小明射中目标的概率为31,因此,小明连射三枪一定能够击中目标 随意掷一枚骰子,“掷得的数就是奇数”的概率与“掷得的数就是偶数”的概率相等 其中正确的结论有()A、1 个 B、2 个 C、3 个 D、4 个 二、等可能性:就是指几种事件发生的可能性相等。1、概率:就是反映事件发生的可能性的大小的量,它就是一个比例数,一般用 P 来表示,P(A)=事件 A可能出现的结果数/所有可能出现的结果数。2、必然事件发生的概率为 1,记作 P(必然事件)=1;北师大版七年级下册数学分章节复习资料 3、不可能事件发生的概率为 0,记作 P(不可能事件)=0;4、不确定事件发生的概率在 01 之间,记作 0P(不确定事件)1。5、概率的计算:(1)直接数数法:即直接数出所有可能出现的结果的总数 n,再数出事件 A 可能出现的结果数 m,利用概率公式()mnP A 直接得出事件 A的概率。(2)对于较复杂的题目,我们可采用“列表法”或画“树状图法”。例 小亮从 3 本语文书,4 本数学书,5 本英语书中任选一本,则选中语文书的概率为_,选中数学书的概率为_,选中英语书的概率为_、例 三名同学站成一排,其中小明站在中间的概率就是_,站在两端的概率就是_、例 将一枚硬币连掷 3 次,出现“两正一反”的概率就是多少?例 将一个各面涂有颜色的正方体,分割成同样大小的 27 个小正方体,从这些正方体中任取一个,恰有 3 个面涂有颜色的概率就是 ()A、2719 B、2712 C、32 D、278 四、几何概率 1、事件 A发生的概率等于此事件 A发生的可能结果所组成的面积(用 SA表示)除以所有可能结果组成图形的面积(用 S全表示),所以几何概率公式可表示为P(A)=SA/S全,这就是因为事件发生在每个单位面积上的概率就是相同的。2、求几何概率:(1)首先分析事件所占的面积与总面积的关系;(2)然后计算出各部分的面积;(3)最后代入公式求出几何概率。例 如图,阴影部分表示在一定条件下小明击中目标的概率,空白部分表示小亮击中目标的概率,图形说明了 ()北师大版七年级下册数学分章节复习资料 A、小明击中目标的可能性比小亮大 B、小明击中目标的可能性比小亮小 C、因为小明与小亮击中目标都有可能,且可能性都不就是 100%,因此,她们击中目标的可能性相等 D、无法确定 练习:1、袋中装有 7 个除了颜色不同外完全相同的球,其中 2 个白球,2 个红球,3 个黑球,从中任意摸出一球,摸到白球的概率就是 P(白球)=2、小猫在如图的地板上自由地走来走去,并停留在某块方砖上,它最终停留在黑色方砖上的概率就是多少?(图中每一块方砖除了颜色不同外完全相同)3、请您设计一个游戏,使某一事件的概率为 。(提示:可用:转盘、卡片、摸球等)第 2 题 41