2023年初中有关圆的知识点归纳总结.pdf
初中有关圆的知识点 1.点与圆的位置关系及其数量特征:如果圆的半径为 r,点到圆心的距离为 d,则 点在圆上 d=r;点在圆内 d dr.二.圆的对称性:1.与圆相关的概念:同心圆:圆心相同,半径不等的两个圆叫做同心圆。等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。圆心角:顶点在圆心的角叫做圆心角.弦心距:从圆心到弦的距离叫做弦心距.2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论:平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧。说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:过圆心;垂直于弦;平分弦;平分弦所对的优弧;平分弦所对的劣弧。上述五个条件中的任何两个条件都可推出其他三个结论。4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.三.圆周角和圆心角的关系:1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.推论 1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;推论 2:半圆或直径所对的圆周角是直角;90的圆周角所对的弦是直径;四.确定圆的条件:1.理解确定一个圆必须的具备两个条件:经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2.定理:不在同一直线上的三个点确定一个圆.3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:1三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.2三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.3三角形的外心的性质:三角形外心到三顶点的距离相等.五.直线与圆的位置关系 设O的半径为 r,圆心 O到直线的距离为 d;d 直线 L和O相交.d=r 直线 L和O相切.dr 直线L和O相离.3.切线的判定定理:经过半径的外端并且垂直于这个条半径的直线是圆的切线.4.切线的性质定理:圆的切线垂直于过切点的半径.推论 1 经过圆心且垂直于切线的直线必经过切点.推论 2 经过切点且垂直于切线的直线必经过圆心.分析性质定理及两个推论的条件和结论间的关系,可得如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.垂直于切线;过切点;过圆心.5.三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.6.三角形内心的性质:1三角形的内心到三边的距离相等.2过三角形顶点和内心的射线平分三角形的内角.由此性质引出一条重要的辅助线:连接内心和三角形的顶点,该线平分三角形的这个内角.六.圆和圆的位置关系.2.两圆位置关系的性质与判定:1两圆外离 dR+r 2两圆外切 d=R+r 3两圆相交 R-r 4两圆内切 d=R-r Rr 5两圆内含 dr 3.相切两圆的性质:如果两个圆相切,那么切点一定在连心线上.4.相交两圆的性质;相交两圆的连心线垂直平分公共弦.七.弧长及扇形的面积 1.圆周长公式:圆周长 C=2R R表示圆的半径 2.弧长公式:弧长 R表示圆的半径,n 表示弧所对的圆心角的度数 5.圆的面积公式.圆的面积 R表示圆的半径 6.扇形的面积公式:扇形的面积 R表示圆的半径,n 表示弧所对的圆心角的度数 九.与圆有关的辅助线 1.如圆中有弦的条件,常作弦心距,或过弦的一端作半径为辅助线.2.如圆中有直径的条件,可作出直径上的圆周角.3.如一个圆有切线的条件,常作过切点的半径或直径为辅助线.4.若条件交代了某点是切点时,连结圆心和切点是最常用的辅助线.十.圆内接四边形 若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆.圆内接四边形的特征:圆内接四边形的对角互补;圆内接四边形任意一个外角等于它的内错角.感谢您的阅读,祝您生活愉快。