2023年北师大版八年级上数学培优及标准超详细解析超详细解析答案.pdf
-
资源ID:91186582
资源大小:1.80MB
全文页数:12页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023年北师大版八年级上数学培优及标准超详细解析超详细解析答案.pdf
北师大版八年级上数学培优及答案 2 作者:日期:3 八年级上试题 一、填空题 1、设 ABC的三边长分别为a,b,c,其中a,b满足0)2(42baba,则第三边的长 c 的取值范围是 2、函数34 xy的图象上存在点 P,点 P到x轴的距离等于 4,则点 P的坐标是_。3、在ABC中,B和C的平分线相交于 O,若BOC=,则A=_。4、直角三角形两锐角的平分线交角的度数是 。5、已知直线 42axxay不经过第四象限,则a的取值范围是 。6、等腰三角形一腰上的高与另一腰的夹角为 30,则顶角度数为_ _。7、如图,折线 ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离 s(km)和行驶时间 t(h)之间的函数关系,根据图中提供的信息,给出下列说法:汽车共行驶了 120km;汽车在行驶途中停留了 0.5h;汽车在整个行驶过程中的平均速度为803km;汽车自出发后 3h-4.5h 之间行驶的速度在逐渐减少。其中正确的说法有_.8、放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了 28 千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了_D_千克”二、选择题 1、等腰三角形腰上的高与底边的夹角为 Cm 则顶角度数为()A.m B.2m C.(90-m)D.(90-2m)2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得 成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则 当 1x6 时,y的取值范围是()A 8 3y 64 11 B 64 11y8 4 O y(微克/毫升)x(时)3 14 8 4 C 8 3y8 D8y16 3、水池有 2 个进水口,1 个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示某天 0 点到 6 点,该水池的蓄水量与时间的关系如图丙所示下列论断:0 点到 1点,打开两个进水口,关闭出水口;1 点到 3 点,同时关闭两个进水口和个出水口;3 点到 4 点,关闭两个进水口,打开出水口;5 点到 6 点同时打开两个进水口和一个出水口其中,可能正确的论断是()A B.C.D.4、将长为 15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同 的截法有()A.5 种 B.6种 C.7种 D.8种 5、在ABC中,适合条件CBA4131,则ABC中是 ()A锐角三角形 B直角三角形 C 钝角三角形 D不能确定 6、直线l1:yk1xb与直线l2:yk2xc在同一平面直角坐标系中的图象如图所示,则关于 x的不等式k1xbk2xc的解集为()A.x1 B.x1 C.x2 D.x2 7、如图,把直线2yx 向上平移后得到直线AB,直线AB经过点()ab,且26ab,则直线AB的解析式是()A.23yx B.26yx O 1 x y 2 yyx y O B A 2yx 5 C.23yx D.26yx 8、已知一次函数bkxy,当x 增加 3 时,y 减少 2,则 k 的值是()A.32 B.23 C.32 D.23 9、如图,平面直角坐标系中,在边长为 1 的正方形ABCD的边上有一动点P沿ABCDA运动一周,则P的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ()A.甲的效率高 B.乙的效率高 C.两人的效率相等 D.两人的效率不能确定 11、直线y=x1 与坐标轴交于A、B两点,点C在坐标轴上,ABC为等腰三角形,则满足条件的点C最多有()A.5 个 B.6个 C.7 个 D.8 个 12、已知一次函数 1 xky,若y随x的增大而减小,则该函数的图像经过()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 三、解答题 1、李明从蚌埠乘汽车沿高速公路前往A地,已知该汽车的平均速度是 100 千米/小时,它行驶t小时后距蚌埠的路程为 s1千米.请用含t的代数式表示 s1;1 2 3 4 1 2 y s O 1 2 3 4 1 2 y s O s 1 2 3 4 1 2 y s O 1 2 3 4 1 2 y O ABCD工1 12 0 5 16 时间 6 设另有王红同时从A地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距蚌埠的路程 s2(千米)与行驶时间t(时)之间的函数关系式为 s2=ktb(k、t为常数,k0),若李红从A地回到蚌埠用了 9 小时,且当t=2 时,s2=560.求k与b的值;试问在两辆汽车相遇之前,当行驶时间t的取值在什么范围内,两车的距离小于 288 千米?2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为 t(h),两组离乙地的距离分别为 S1(km)和 S2(km),图中的折线分别表示 S1、S2与 t 之间的函数关系(1)甲、乙两地之间的距离为 km,乙、丙两地之间的距离为 km;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段 AB所表示的 S2与 t 间的函数关系式,并写出自变量 t 的取值范围 3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量 y(升)与时间 x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟 19 升,求排水时 y 与 x 之间的关系式。如果排水时间为 2 分钟,求排水结束时洗衣机中剩下的水量。2468S(k2 0 t(A B y/升x/分040154 7 4、如图,已知直线L过点(0 1)A,和(1 0)B,P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M (1)直接写出直线L的解析式;(2)设OPt,OPQ的面积为S,求S关于t的函数关系式.5、探索:在如图至图中,三角形 ABC的面积为 a,(1)如图,延长ABC的边 BC到点 D,使 CD=BC,连接 DA.若ACD的面积为 S,则S1=(用含 a 的代数式表示);(2)如图,延长ABC的边 BC到点 D,延长边 CA到点 E,使 CD=BC,AE=CA,连接 DE,若DEC的面积为 S,则 S2=(用含 a 的代数式表示)并写出理由;(3)在图的基础上延长 AB到点 F,使 BF=AB,连接 FD,FE,得到DEF(如图),若阴影部分的面积为 S3,则 S3=(用含 a 的代数式表示)ECCADDABBFECADB 发现:象上面那样,将ABC各边均顺次延长一倍,连接所得端点,得到DEF(如图),此时,我们称ABC向外扩展了一次,可以发现,扩展后得到的DEF的面积是原来L A O M P B x y L Q GMHFECDAB 8 ABC面积的倍。应用:去年在面积为 10m2的ABC空地上栽种了某种花,今年准备扩大种植规模,把ABC向外进行两次扩展,第一次由ABC扩展成DEF,第二次由DEF扩展成MGH(如图)。求这两次扩展的区域(即阴影部分)面积共为多少 m2?6、如图:已知ABC中,AD BC于 D,AE为A的平分线,且B=35,C=65,求DAE的度数。7、如图:ABC中,O是内角平分线 AD、BE、CF的交点。求证:BOC=90+21A;过 O作 OG BC于 G,求证:DOB=GOC。ABEDCABCDEFG 9 答案见下页 1、2c4 2、441,或 447,、3、01802 4、045或0135 5、4a注意:一次函数图象是直线,但直线不一定是一次函数。如直线02 y,03 x 6、060或0120 7、8、20 BADCB BDCDA CB 1、解:(1)S1=100t (3 分)(2)S2=kt+b,依题意得 t=9 时,S2=0,(4 分)t=2,S2=560 560209bkbk:72080bk (7 分)(解法一)由得,S2=-80t+720 令 S1=S2,得 100t=-80t+720,解得 t=4(9 分)当 t 4 时,S2S1,S2-S1288 (11 分)即(-80t+720)-100t288,-180t-432 180t 432,解得 t 2.4(12 分)在两车相遇之前,当 2.4 t 4 时,两车的距离小于 288 千米。(13 分)(解法二)由得,S2=-80t+720,令 t=0,S2=720,即王红所乘汽车的平均速度为9720=80(千米/时)(8 分)10 设两辆汽车 t1小时后相遇,100t1+80t1=720,解得 t1=4 (9 分)又设两车在相遇之前行驶 t2小时后,两车之距小于 288 千米,则有 720-(100t2+80t2)288(11 分)解得:t22.4(12 分)在两车相遇之前,当 2.4 t 4 时,两车的距离小于 288 千米。(13 分)2、解:(2)第二组由甲地出发首次到达乙地所用的时间为:0.81082)28(28(小时)第二组由乙地到达丙地所用的时间为:0.21022)28(22(小时)(3)根据题意得 A、B 的坐标分别为(0.8,0)和(1,2),设线段 AB 的函数关系式为:bktS2,根据题意得:28.00bkbk 解得:-810bk 图中线段 AB 所表示的 S2与 t 间的函数关系式为:8102tS,自变量 t 的取值范围是:10.8 t 3、解:(1)4 分钟,40 升(各一分)(2)y=40-19(x-15)=-19x+325,(3 分)2 升(1分)4、(1)1yx 2 分(2)OPt,Q点的横坐标为12t,当1012t,即02t 时,112QMt,11122OPQStt 3 分 当121t,即2t时,111122QMtt,11122OPQStt 11 11102221112.22tttSttt ,4 分 5、a 2a 6a 7 7(7a)10 m2 6注意:书写数学符号语言一定要规范!在不会引起误会情况下,角尽量用1、2、3、4、形式表达,或用表示角顶点的一个字母表示,如A、B、C、D、。答案见下页 12