大一高数一知识点总结.docx
大一高数一知识点总结一、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(55,且55,则5=5)实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等”即:任何一个集合是它本身的子集。AA真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)如果AB,BC,那么AC如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集二、集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A=a,b,c。a、b、c就是集合A中的元素,记作aA,相反,d不属于集合A,记作dA。有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N*或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。列举法:a,b,c描述法:将集合中的元素的公共属性描述出来。如xR|x-3>2,x|x-3>2,(x,y)|y=x2+1语言描述法:例:不是直角三角形的三角形例:不等式x-3>2的解集是xR|x-3>2或x|x-3>2强调:描述法表示集合应注意集合的代表元素A=(x,y)|y=x2+3x+2与B=y|y=x2+3x+2不同。集合A中是数组元素(x,y),集合B中只有元素y。3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A=1,2,集合B=2,1,则集合A=B。例题:集合A=1,2,B=a,b,若A=B,求a、b的值。解:,A=B注意:该题有两组解。(2)互异性指集合中的元素不能重复,A=2,2只能表示为2(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。三、集合间的基本关系1.子集,A包含于B,记为:,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。反之:集合A不包含于集合B,记作。如:集合A=1,2,3,B=1,2,3,4,C=1,2,3,4,三个集合的关系可以表示为,B=C。A是C的子集,同时A也是C的真子集。2.真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)3、不含任何元素的集合叫做空集,记为。是任何集合的子集。4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A=1,2,3,4,5,则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。例:集合共有个子集。(13年高考第4题,简单)练习:A=1,2,3,B=1,2,3,4,请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。解析:集合A有3个元素,所以有23=8个子集。分别为:不含任何元素的子集;含有1个元素的子集123;含有两个元素的子集1,21,32,3;含有三个元素的子集1,2,3。集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。